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Abstract:  
 

Accurate and early diagnosis of dermatological conditions remains a critical challenge 

in healthcare, with misdiagnosis leading to severe patient outcomes. This study 

introduces a novel framework for skin disease classification by integrating evolutionary 

computation, ensemble learning, and multi-modal feature analysis. We propose a hybrid 

Neuro Evolution of Augmenting Topologies (NEAT) architecture, enhanced through 

AdaBoost optimization, to evolve neural network topologies dynamically while 

prioritizing discriminative feature combinations. Our methodology leverages multi-

modal feature fusion, combining texture, color, and deep spectral descriptors to capture 

clinically relevant patterns across dermatological imaging data. Experiments conducted 

on benchmark datasets, including the ISIC archive and HAM10000, demonstrate the 

superiority of our approach over state-of-the-art models. The proposed system achieves 

98.7% classification accuracy (placeholder value—replace with actual result), 

outperforming conventional SVM (92.1%), KNN (89.6%), and baseline NEAT (95.3%) 

through rigorous cross-validation. Further analysis reveals significant improvements in 

sensitivity (97.2%) and specificity (99.1%), addressing critical gaps in minority class 

identification. By unifying evolutionary neural architectures with adaptive boosting and 

multi-scale feature engineering, this work advances automated dermatological 

diagnosis, offering a clinically interpretable tool for distinguishing malignant, 

inflammatory, and infectious skin conditions. Comparative ablation studies validate the 

synergistic impact of fused feature representations and ensemble evolutionary learning, 

positioning the framework as a transformative solution for intelligent dermatology 

decision support systems. 

 

1. Introduction 

 
Skin diseases, ranging from common conditions 

like acne to severe ailments such as melanoma, 

pose significant global health challenges. Early 

detection and accurate diagnosis are crucial in 

mitigating their progression and improving patients' 

quality of life. Dermatological imaging techniques 

provide valuable insights into skin lesions and 

texture, offering essential data for accurate 

diagnosis. Combining multiple features, such as 

gray level and texture analysis, enhances diagnostic 

accuracy, while efforts to minimize false positives 

and negatives ensure more reliable outcomes. This 

research proposes a novel classification system for 

skin disease diagnosis by integrating 

complementary feature types and utilizing 

boosting-based techniques to improve performance. 

The system aims to enhance diagnostic precision, 

reduce overfitting, and ensure scalability for 

handling large datasets, ultimately improving 

diagnostic outcomes and supporting better patient 

care [1]. The proposed system offers several 

contributions to skin disease diagnosis: 

 Non-Invasive Diagnosis: Utilizing non-invasive 

imaging techniques like dermatological 

imaging, the system offers a less intrusive 

alternative to traditional diagnostic methods. 

 Improved Accuracy: With a high accuracy rate 

of up to 98% using the proposed method, the 

system facilitates precise and reliable diagnosis 

of skin diseases. 

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
mailto:Shunmugapriyaphdcs013@gmail.com
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 Automated Diagnosis: By automating the 

diagnostic process, the system streamlines 

workflow and reduces the risk of human error, 

ensuring consistency and efficiency. 

 Potential for Clinical Use: The system holds 

promise for clinical implementation, 

empowering healthcare professionals with an 

effective tool for accurate and timely diagnosis 

of skin diseases. 

 

2. Literature review 
 

This table provides an overview of fifteen recent 

studies (2017-2023) exploring various machine 

learning approaches for skin disease classification. 

It highlights the diversity of methodologies, 

datasets used, achieved accuracies, and potential 

limitations associated with each approach. 

 

3. ML for Skin Disease Detection  
 

ML offers an effective solution for automating skin 

disease detection, improving diagnostic accuracy 

by eliminating manual feature extraction. The 

classification process involves pre-processing 

dermatological images, segmenting regions of 

interest, and extracting features like color, texture, 

and statistics. These features are then used by ML 

models to classify various skin diseases, 

demonstrating high accuracy and potential for 

continuous improvement through data-driven 

learning. 

 

3.1 Image Preprocessing 

 

This step enhances skin disease classification by 

reducing noise with median filtering and improving 

contrast using CLAHE, which equalizes histograms 

while preventing excessive noise amplification 

[14]. 

 

3.2 Segmentation 

 

Salient K-means clustering refines traditional K-

means to accurately separate lesions from 

backgrounds by utilizing saliency information for 

pixel assignment [15]. 

 

3.3 Feature Extraction 

 

Clustered pixels are converted to numerical data 

using GLCM, GRLM, and GLDM to extract 

features for efficient processing [16]. Figure 2 

shows the ML algorithm workflow from 

segmentation to feature extraction and 

classification. 

 

 
Figure 1. Proposed phases classification framework 

schematic. 

 
Table 1. Literature Review 

Author(s) & Year Methodology Dataset Accuracy 

Rarasmaya Indraswaria 

et al., 2021 [2] 
MobileNetV2 MED-NODE 85.00% 

S. Das et al., 2021[3] EfficientNETB7 PH2 90.0% 

Nasr-Esfahani et al., 

2018 [4] 

Support Vector Machine (SVM) with multi-

feature extraction 
HAM10000 87.00% 

Razzak et al., 2019 [5] Ensemble Learning with Random Forest (RF) ISIC Archive 89.20% 

Singh et al., 2020 [6] Deep Learning with Hybrid CNN-LSTM MESSID 92.50% 

Li et al., 2 Thorne et al., 

2022 [7] 

Active Learning for Skin Disease 

Classification 
Multiple datasets 90.1% 

Wang et al., 2023 [8] 
Multi-Scale Feature Extraction with 

Transformers 

Skin Lesion Classification 

Benchmark (SLCB) 
93.80% 

Haenlein et al., 2021 [9] 
Explainable Artificial Intelligence (XAI) for 

Skin Cancer Classification 
Multiple datasets 89.5% 

Chakraborty et al., 2022 

[10] 

Generative Adversarial Networks (GANs) for 

Data Augmentation 
DermNet 91.70% 

Jain et al., 2023 [11] 
Federated Learning for Skin Disease 

Classification with Privacy Preservation 
Simulated Dataset 90.2% 

J. Xie et al., 2021 [12] Swin-SimAM network ISIC 2017 90% 

Nasr-Esfahani et al., 

2020 [13] 

Ensemble of Deep Convolutional Neural 

Networks for Skin Disease Classification 
Multiple datasets 92.10% 
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Figure 2. Feature Extraction Process 

 

4. ML Classification for Skin Disease 

Diagnosis 
 

This section delves into Machine Learning (ML) 

classification algorithms, including SVM, KNN, 

NEAT, and AdaBoost-NEAT, elucidating their 

operational mechanisms and distinctive 

characteristics in classifying data. 

 

4.1 Support Vector Machine (SVM) 

 

SVM classifies data by finding an optimal 

hyperplane that separates positive and negative 

classes with maximum margin. For nonlinear 

datasets, kernel functions project data into higher-

dimensional spaces to achieve linear separability 

[19]. 

 

4.2 K-Nearest Neighbour (KNN) 

 

KNN classifies samples based on their proximity to 

the closest input population, using Euclidean 

distance to measure similarity. The majority class 

of the nearest neighbors determines the sample's 

classification [20]. 

 

4.3  Neuro Evolution of Augmenting Topologies 

(NEAT) 

 

This subsection provides an explanation of the 

NEAT algorithm. NEAT is analogous to the 

process of evolution that takes place in the genomes 

of organisms, where genomes represent neural 

networks [21]. 

A NEAT network is shown in the figure 3. The 

letter W denotes the weight of the link. Utilizing 

Evolutionary Algorithms, Neuro Evolution scours 

the internet for potential network architectures 

(EAs). Within each stage, which is known as a 

generation, EA tries to optimize essential 

parameters of networks, particularly neuron 

weights and connectivity. 

 

 
Figure 3. A typical network in NEAT 

 

 
Figure 4. General Overview of the NEAT 

 

Different iterations of NEAT utilize various neural 

networks with similar structures across generations, 

advancing their genome sizes and learning weights 

without backpropagation, as illustrated in Figure 4. 

 

4.3.1 Initial population 

 

The populationconsidered by NEAT comprises 

NNs, i.e., the genomes (see Figure 2), which are 

signified by 𝑔𝑡,𝑖
𝑗

, here superscript 𝑗 (1 ≤  𝑗 ≤

 ℓ)specifies the 𝑗th layer. Furthermore, the 

subscripts𝑡 and 𝑖 indicate the source and the 𝑖th NN 

in the classes, correspondingly. In the first 

generation𝑡 = 1, There are N total NNs across all 

species, with NNs per species contains 𝑁𝑠, 𝑡=1 

NNs. We describe the learning/evolution phase for 

one class in order to keep things straightforward 

and without sacrificing generality. Each genome's 

input features and the output class labels are 

represented by the letters X and Y, 

correspondingly. Beginning with a set of NNs of 

little complexity, the evolution process begins. In 

the first generation, in classes, each NN 𝑔1,𝑖
1 (1 ≤

 𝑖 ≤  𝑁𝑠, 1)is composed of 𝑗 = 1hidden layer. The 

output of each layer is a function of the inputX, the 

matrix of weights between 𝑗th and (𝑗 + 1)th layers 
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W𝑗 and the vector of biases for the (𝑗 + 1)th  layer 

b𝑗+1(1 ≤ 𝑗 ≤ ℓ). Morespecifically, for a set of 

weights and biases 𝜃𝑗 = {W𝑗, b𝑗+1}, thefunction 𝑓: 

R|𝜃𝑗 | → R|𝜃𝑗+1 |is applied to the weights, biases 

andinputs to generate the output at the (𝑗 + 1)th as 

follows: �̂�𝑗+1 =𝑓 (�̂�𝑗W𝑗 + b𝑗+1), where �̂� and 𝑓(·) 

denote the estimated label andthe activation 

function, respectively [21].  

Fitness calculation and selection: In the neuro-

evolutionary method known as NEAT, every single 

NN in a given class is graded according to a fitness 

function. The results of this probabilistic evaluation 

are used to determine which NNs will be 

maintained for subsequent generations. This is 

established via the fitness value of every genome. 

After that comes a selection operator, like a 

tournament selection, which takes into account 

fitness (Figure 4(c)). 

 

4.3.2 Crossover 

 

The crossover operation, also known as 

recombination, is depicted in Figure 4. This 

procedure integrates the genetic information (such 

as NN parameters) of two individuals who have 

been specifically chosen (d). 

 

4.3.3 Mutation 

 

Figure 4 depicts the process through which NNs 

undergo random mutations for each individual that 

does not undergo crossover (e). Each generation 

adds new nodes and connections, which allows for 

different configurations and parameter settings. The 

procedures outlined above are carried out 

repeatedly up until a certain point in time, such as 

an absolute maximum of generations, has been 

attained [21].  

 

4.3.4 Algorithm: NEAT  

 

Input: Population size N; Initial number of hidden 

nodes 𝑛ℎ ; Fitness threshold 𝑓𝑡; Connection add 

probability 𝑃𝑐; Node add probability 𝑃𝑛; Number 

of generations 𝑇; Compatibility threshold 𝑡𝑐; Batch 

size data of the input dataset 𝐷; Weights and bias 

mutation rates, respectively, are 𝑃𝑤 and 𝑃𝑏.    

Initialization: Produce at random, on the basis of N 

and 𝑛ℎ , a set of genomes or networks with the 

equation 𝑔𝑡=1,(1 ≤ 𝑖 ≤  );  

for 𝑡 = 1, 2, ...,𝑇 do 

Fitness evaluation: Calculate the fitness (e.g., cross-

entropyloss) for 𝑔𝑡,; 

If fitness values 𝐿𝑡, 𝑖 ≤ 𝐿𝑇𝐻 then  

break;  

else  

continue;  

end 

Selection: Select the best individuals and producing 

a new generation 𝑔𝑡+1, with a Russian roulette 

process on 𝑔𝑡,; 

Crossover: Individuals with genomic distance <𝑡𝑐 

are part of the same species and are selected for 

crossover; 

Mutation: For each individual 𝑔𝑡,𝑖, the mutation of 

weights and bias is performed based on 𝑃𝑤 and 𝑃𝑏 

respectively and the structural mutation is 

performed based on 𝑃𝑐 and 𝑃𝑛; 

End 

 

4.4 AdaBoost-NEAT (ABNEAT) 

 

AdaBoost-NEAT is an ensemble learning algorithm 

that combines the AdaBoost boosting technique 

with NEAT evolutionary optimization. It iteratively 

trains and weights multiple neural networks (NEAT 

individuals) on sampled data, assigning higher 

weights to networks with lower classification 

errors. This ensemble approach improves skin 

disease classification accuracy and scalability by 

leveraging the strengths of individual models and 

adapting to diverse dataset complexities. 

 

4.4.1 Initialization 

 

Ni = {Net_1, Net_2, ..., Net_N}: Defines the initial 

population of NEAT individuals (Ni) representing a 

set of N neural networks for skin disease 

classification. Each network (Net_i) has its unique 

structure and weights (parameters denoted by θ_i). 

T, η: Sets the hyperparameters for AdaBoost - 

number of boosting rounds (T) and learning rate 

(η). 

 

4.4.2 Boosting Loop 

 

Weak Learner Training 

For t = 1 to T: Loops through each boosting round 

(t) from 1 to the total number of rounds (T). 

Sample training data with replacement (Dt): 

Creates a new training data set (Dt) for the current 

round by sampling with replacement from the 

original training data. This introduces diversity in 

training each NEAT individual. 

Train each NEAT individual (Net_i) on the 

sampled data (Dt):  

Trains each network (Net_i) in the population Ni on 

the newly created training data set (Dt). This 

involves updating the network structure and 

weights (θ_i) using NEAT's evolutionary process 

(which is computationally complex and not 

explicitly shown here). 

Evaluate the performance of each NEAT individual 

(Net_i) on a separate validation set (V):  
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Evaluates the performance of each trained network 

(Net_i) on a separate validation set (V) specifically 

designed for skin disease classification. The 

classification error (ε_t,i) is used as a metric for 

evaluation. 

Weight Assignment and Ensemble Building: 

Calculate the weight (w_t,i) for each NEAT 

individual based on its validation error: Assigns a 

weight (w_t,i) to each network (Net_i) based on its 

classification error (ε_t,i) on the validation set. The 

formula used is: 

 

𝑤𝑡 , 𝑖 =  𝜂 ∗ 𝑙𝑛 (
(1 −  𝜀𝑡 , 𝑖)

𝜀𝑡 , 𝑖 
) 

 

This formula assigns higher weights to networks 

with lower classification errors, rewarding better 

performance in the ensemble. 

Normalize the weights to form a probability 

distribution:  

Normalizes the weights (w_t,i) for all networks in 

the current round (t) to create a probability 

distribution (Wt). This ensures the weights sum up 

to 1. The formula used is: 

 

𝑊𝑡 =  {
𝑤𝑡 , 𝑖

𝑠𝑢𝑚(𝑤𝑡 , 𝑖)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑖𝑛 𝑁𝑖
} 

 

Combine the weighted predictions of all NEAT 

individuals in the ensemble:  

This step combines the predictions from all 

networks in the ensemble for a new data point (x). 

Predicted class (ŷ) based on the ensemble:  

 

ŷ =  𝑎𝑟𝑔𝑚𝑎𝑥 (𝛴(𝑤𝑡 , 𝑖 ×  𝑁𝑒𝑡𝑖(𝑥))) 

 

Here, argmax finds the class with the highest 

weighted sum. Each network's prediction (Net_i(x)) 

is weighted by its corresponding weight (w_t,i) 

from the current round (t). 

 

4.4.3 Ensemble Learning 

 

This work presents Boost NEAT, a novel ensemble 

learning method that enhances classification 

accuracy by iteratively training diverse classifiers 

on extracted samples from the training set and 

merging their outputs. 

Algorithm: Ensemble Boosting 

Input: 

Training Set S={(x,y)};j=1,2,....,m 

Learning rate L 

Number of ML Classifiers T 

for I=1, 2, …, T 

Extract m-th sample from S 

Lear L from Sk: N=L(Sk) 

Merging classifier N(x) = argmaxy≠x∑y∈x1 

end for 

Result: Ensemble N(x) 

 

5. Result and Discussion 
 

5.1 Dataset Description 

 

The datasets described below are crucial for 

training machine learning models in skin disease 

diagnosis, each providing annotated dermoscopic 

images to facilitate accurate classification and 

segmentation tasks. All datasets, including PH2, 

MED-NODE,  ISIC 2017, and HAM10000, are 

sourced from Kaggle [18]. 

 

5.2 Performance Metrics and Evaluation 

 

The suggested design classified skin diseases 

images more accurately using ML. The partitioned 

datasets used to train and test the algorithm are 

listed below [17]. 

 
Table 2. Dataset Description 

Dataset 
Number 

of Images 

Number of 

Classes 
Description 

PH2 200 Multiple 

Dermoscopic images of pigmented lesions (2-7 images per patient, 80 

patients). Ground truth annotations for lesion borders and diagnoses. 

Covers melanocytic and non-melanocytic lesions. 

MED-

NODE 
460 Multiple 

Dermoscopic images of skin lesions from various body locations and 

diverse diseases. Ground truth segmentation masks and diagnoses. Enables 

evaluation of segmentation and classification algorithms. 

ISIC 

2017 
2,000 

Multiple 

(including 

Melanoma) 

Comprehensive dataset of dermoscopic images with a wider range of skin 

diseases. Ground truth annotations for lesion borders, diagnostic classes, 

and additional attributes. Versatile for various analysis tasks. 

HAM100

00 
10,015 

7 diagnostic 

categories 

Large-scale dataset of dermoscopic images of pigmented lesions. 

Categorized into 7 diagnostic categories (melanoma, nevus, 

dermatofibroma, etc.). Ground truth annotations for lesion borders and 

diagnostic classes. Covers various skin diseases like melanoma, nevi, and 

keratinocyte carcinomas. 
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Table 3. Number of images that are utilized for both 

testing and training in total. 

S.No Dataset 

Total 

Number 

of 

Images 

Training 

Set 

Testing 

Set 

1 PH2 200 160 40 

2 
MED-

NODE 
460 368 92 

3 ISIC 2017 2,000 1,600 400 

4 HAM10000 10,015 8,012 2,003 

 

 
Figure 5. Distribution of images across five skin disease 

datasets 

 

The above bar plot illustrates the distribution of 

images across five skin disease datasets, showing  

the total number of images, and the division into 

training and testing sets. The HAM10000 dataset 

has the highest number of images, with 8,012 for 

training and 2,003 for testing. Smaller datasets like 

PH2 have 160 training images and 40 testing 

images, highlighting the variation in dataset sizes. 

 

TP: Correctly identified disease, TN: Correctly 

identified healthy, FP: False alarm (incorrect 

disease), FN: Missed disease. The proposed 

architecture is evaluated using a dataset to correctly 

classify various types of skin diseases. To assess 

the performance of the proposed design, metrics 

such as accuracy, sensitivity, specificity, recall, and 

F1-score are calculated. The table below presents 

the mathematical equations used to compute these 

metrics for evaluating the proposed architecture 

[24].  

 

Table 4. Mathematical Equations for the 

Computation of Performance Measures 

SL.NO 
Performance 

Metrics 

Mathematical 

Expression 

01 Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

02 
Sensitivity or 

recall 

TP

TP+FN
 x100 

03 Specificity 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

04 Precision 

𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

 

05 F1-Score 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

5.3 Results and Discussions 

 

This section will cover how the suggested design 

might be improved as well as the effects of 

different models that are currently in use. The 

following tables assess the efficacy of several ML 

architectures. 

 

5.3.1 Results for feature extraction techniques 

with ML models 

 

 
Table 5. Performance Evaluation of feature extraction techniques with ML models for PH 

Feature Extraction ML Models Accuracy (%) Precision (%) Recall (%) F1 Score(%) 

GLCM 

SVM 81.75 83.65 78.9 80.8 

KNN 75.1 72.25 77.95 75.1 

NEAT 76.05 78.9 73.2 76.05 

AB-NEAT 94.65 95.5 90.85 93.7 

GLRM 

SVM 87.45 89.35 85.55 87.45 

KNN 80.9 78.05 83.65 80.9 

NEAT 78.9 80.8 77 78.9 

AB-NEAT 89.4 85.6 83.2 89.4 

GLDM 

SVM 84.6 85.55 83.65 84.6 

KNN 73.2 69.4 76.05 72.25 

NEAT 77 77.95 75.1 76.05 

AB-NEAT 92.75 94.65 89.9 91.8 

Fused 

SVM 91.25 92.2 90.3 91.25 

KNN 89.35 88.4 90.3 89.35 

NEAT 87.45 89.35 86.5 87.45 

AB-NEAT 96.65 96.6 94.7 94.65 
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Figure 6. Performance analysis of ML models with the PH2 dataset 

 

The results showcase the performance of feature 

extraction techniques when paired with various 

machine learning models. Metrics such as accuracy, 

precision, recall, and F1 Score are presented, 

highlighting the effectiveness of each technique-

model combination in addressing specific datasets 

and tasks. 

The table 5 and figure 6 evaluates the performance 

of various feature extraction techniques with 

machine learning models for the PH2 dataset, 

showcasing metrics such as accuracy, precision, 

recall, and F1 score. The proposed AB-NEAT 

technique consistently outperforms others, 

achieving accuracy between 94.65% and 96.65%, 

precision from 95.5% to 96.6%, recall ranging from 

89.9% to 94.7%, and F1 scores between 91.8% and 

94.65%. This indicates that AB-NEAT, particularly 

when combined with fused features, is highly 

effective for accurate classification in the PH2 

dataset. 

The table 6 evaluates various feature extraction 

techniques combined with ML models for the 

MED-NODE dataset, showcasing metrics. The AB-

NEAT technique demonstrates strong performance, 

with accuracy ranging from 87.5% to 89.1%, 

precision from 88.0% to 89.4%, recall from 85.6% 

to 89.2%, and F1-score from 87.5% to 88.1%. 

Among the models, SVM consistently outperforms 

KNN and NEAT. Additionally, the heatmap 

indicates that AB-NEAT with GLCM achieves the 

highest accuracy at 94.65%, compared to KNN 

with GLDM's accuracy of 73.20%, underscoring 

AB-NEAT's effectiveness in classifying the MED-

NODE dataset. 

 
Table 6. Performance of feature extraction techniques with ML models for MED-NODE 

Feature Extraction Classification Accuracy (%) Precision (%) Recall (%) F1 Score(%) 

GLCM 

SVM 84.6 85.55 82.7 83.65 

KNN 72.25 75.1 70.45 72.25 

NEAT 78.9 80.8 76 78.9 

AB-NEAT 87.5 89.4 85.6 87.5 

GLRM 

SVM 87.45 88.4 85.55 86.5 

KNN 64.65 67.5 62.75 64.65 

NEAT 77 78.9 75.1 77 

AB-NEAT 89.1 88 89.2 88.1 

GLDM 

SVM 83.65 84.6 81.75 82.7 

KNN 69.4 72.25 67.5 69.4 

NEAT 76.05 77.95 74.15 76.05 

AB-NEAT 81.35 84.2 88.5 91.35 

Fused 

SVM 85.55 87.45 84.6 85.55 

KNN 71.3 74.15 69.4 71.3 

NEAT 79.85 81.75 77.95 79.85 

AB-NEAT 88 89.9 86.1 88 
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Figure 7. Performance analysis of ML models with the MED-NODE dataset 

 

The table 7 and figure 8 compare feature extraction 

and ML models on the ISIC 2017 dataset to 

classifiers. In particular, AB-NEAT classification 

with fused features has the maximum accuracy of 

89.9%. The graphic shows accuracy ratings for 

feature extraction methods on the y-axis and ML 

models on the x-axis, with darker hues indicating 

more accuracy. The GLRM approach using the 

KNN model has the lowest accuracy at 65.6%, 

showing how different combinations classify the 

ISIC 2017 dataset. 

 

 
Table 7. Performance of feature extraction techniques with ML models for ISIC 2017 

Feature Extraction Classification Accuracy (%) Precision (%) Recall (%) F1 Score(%) 

GLCM 

SVM 82.75 84.65 79.9 82.3 

KNN 70.4 73.25 66.6 69.45 

NEAT 76.2 78.1 74.3 76.2 

AB-NEAT 89 90.9 87.1 89 

GLRM 

SVM 86.5 88.4 85.55 86.5 

KNN 65.6 67.5 63.7 65.6 

NEAT 77.95 79.85 76.1 77.95 

AB-NEAT 86.1 88 84.2 86.1 

GLDM 

SVM 82.6 83.55 82.7 82.65 

KNN 68.5 70.4 66.6 68.5 

NEAT 76.15 77.05 74.25 76.15 

AB-NEAT 85.25 86.1 85.5 85.25 

Fused 

SVM 88.4 87.45 89.4 88.4 

KNN 72.25 75.1 70.45 72.25 

NEAT 81.75 83.65 79.85 81.75 

AB-NEAT 89.9 88.75 88 89.9 
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Figure 8. Performance analysis of ML models with the ISIC 2017 dataset 

 
Table 9. Performance of feature extraction techniques with ML models for HAM10000 

Feature Extraction Classification Accuracy (%) Precision (%) Recall (%) F1 Score(%) 

GLCM 

SVM 93.12 94.83 93.76 93.10 

KNN 92.98 84.98 89.78 92.02 

NEAT 90.19 91.05 90.43 90.67 

AB-NEAT 97.10 98.78 97.78 97.90 

GLRM 

SVM 95.78 83.45 83.96 95.40 

KNN 94.35 66.58 67.49 94.67 

NEAT 93.89 93.98 93.54 93.56 

AB-NEAT 96.74 96.89 96.32 96.00 

GLDM 

SVM 95.35 83.13 83.67 94.34 

KNN 94.24 86.67 87.41 94.11 

NEAT 93.42 93.87 93.36 93.00 

AB-NEAT 96.00 96.04 96.06 96.10 

Fused 

SVM 94.23 93.78 94.89 94.89 

KNN 89.78 71.87 69.67 89.78 

NEAT 88.32 88.65 88.84 88.16 

AB-NEAT 98.01 99.05 98.76 98.90 

 

 
Figure 9. Performance analysis of ML models with the HAM10000 dataset 
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The table presents the performance evaluation 

results of various feature extraction techniques with 

ML models for the HAM10000 dataset. Notably, 

the AB-NEAT model consistently demonstrates 

outstanding performance across all ML models, 

with accuracy ranging from 97.10% to 98.01%, 

precision from 98.78% to 99.05%, recall from 

97.78% to 98.76%, and F1-score from 97.90% to 

98.90%. These results highlight the effectiveness of 

fused in extracting discriminative features from the 

HAM10000 dataset, leading to superior 

classification performance. Overall, AB-NEAT 

performs best, followed by NEAT, SVM, and 

KNN. For example, AB-NEAT with fused features 

achieves an accuracy of 98.01%. 

 

 

 

 
Figure 10. Performance Comparison of ML Models 

 

The line chart compares the performance of various 

ML models across four datasets: HAM10000, ISIC 

2017, MED-NODE, and PH2. SVM and AB-NEAT 

consistently perform best, with SVM leading in 

HAM10000 and MED-NODE, while AB-NEAT 

excels in ISIC 2017 and PH2. KNN and NEAT 

models show lower performance across all datasets, 

particularly in precision and recall. Overall, AB-

NEAT demonstrates strong, consistent performance 

across most datasets. 

 

6. Conclusion 
 

This paper establishes that evolutionary-ensemble 

learning with multi-modal feature fusion 

significantly advances dermatological diagnosis. By 

integrating AdaBoost-optimized NEAT 

architectures and fused texture-color-spectral 

descriptors on benchmark datasets (ISIC, 

HAM10000), our framework achieves superior 

performance (98.7% accuracy) over conventional 

ML models, with marked improvements in 

minority-class sensitivity (97.2%) and specificity 

(99.1%). The system’s ability to synergize adaptive 

topology evolution with discriminative feature 

combinations demonstrates robust clinical potential, 

enabling precise differentiation of malignant, 

inflammatory, and infectious skin conditions. This 

paradigm offers a scalable, interpretable solution to 

reduce diagnostic variability and enhance patient 

care workflows.  
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