

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.2 (2025) pp. 3207-3214
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

An Efficient Solution towards SDLC Automation using Multi-Agent Integration

through Crew AI

Nikhil Sagar Miriyala1*, Bharath Kumar Bandaru2, Prakhar Mittal3, Kiran Babu Macha4,

Rishi Venkat5, Anu Rai6

1Oracle America Inc., USA

* Corresponding Author Email: nmiriya7@gmail.com - ORCID: 0009-0005-1985-7543

2Fidelity Investments Inc., USA

Email: bandarubk7@gmail.com - ORCID: 0009-0003-1151-7961

3Principal Analyst, Atricure, USA

Email: Kiranbabu.macha@aol.com - ORCID: 0009-0009-0960-0612

4Software Engineering, Maximus Inc., USA

Email: Imprakharmittal@gmail.com - ORCID: 0009-0004-3278-9381

5Principal Product Manager, Walmart Inc., USA

Email: Rishi.x.venkat@gmail.com - ORCID: 0009-0001-0155-2929

6Technical Product Manager, USA

Email: anurai483@gmail.com - ORCID: 0009-0004-5572-3852

Article Info:

DOI: 10.22399/ijcesen.2384

Received : 22 February 2025

Accepted : 12 May 2025

Keywords :

SDLC Automation,

GenAI Tools,

CrewAI,

Multi-Agent Systems,

AI-Orchestrated Integration,

Workflow Engines.

Abstract:

Software Development Life Cycle (SDLC) is the fundamental concept which underlies

the systematic development of a software product. It consists of requirements gathering,

design of the application, development, testing, deployment & maintenance phases. Due

to the increase in software complexity and the demand for fast delivery and continuous

improvements, automation has become a key player in developing high-quality

applications and maintaining them efficiently. On the other hand, with immense and

continuous advancements happening in the Generative AI space, GenAI tools are

emerging to be a powerful asset to automate repetitive tasks, enhance accuracy, and

accelerate processes. Combining the above, this paper describes the use of GenAI tools

in automating different phases of SDLC, the issues and shortcomings associated with

the traditional automation approach by depending on a single tool and emphasize the

need for using specialized tools for effectively handling various phases of SDLC. We

have explored and analyzed a tool named CrewAI, a robust orchestration framework,

which has the capability of integrating several AI-powered tools across the different

phases of SDLC, while ensuring smooth transition between all the SDLC life cycle

phases, maintaining flexibility and efficiency. We have proposed a high-level design

towards SDLC automation using CrewAI, along with the challenges that arise with

respect to regulatory compliance, data security, and ethical considerations when using

GenAI.

1. Introduction

1.1 Overview of SDLC and Its Phases:

The structured process of Software Development

Life Cycle (SDLC) is a critical workflow for

successful delivery of software products. This

process ensures that the software aligns with the

business needs while maintaining high quality

application and is adhered to the stipulated

timelines. The SDLC includes the following phases

[1]:

1) Requirement Gathering and Analysis:
The first phase of SDLC involves gathering

requirements from various stakeholders, clients,

customers, business analysts and so on. The

information collected forms the building blocks for

the software application. The requirements between

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com

Nikhil Sagar Miriyala, Bharath Kumar Bandaru, Prakhar Mittal, Kiran Babu Macha, Rishi Venkat, Anu Rai / IJCESEN 11-2(2025)3207-3214

3208

the various parties and developers are fulfilled by

utilizing the Software Requirement Specification

(SRS) documentation. This ensures that everyone

has a clear understanding of project expectations.

2) Design: In this phase, the software design

and architecture are created. It also includes data

flow in the software, interaction between various

models, & other system integrations. It typically

has two steps, High-level Design (HLD) & Low-

level Design (LLD). HLD defines the architecture

while LLD defines the workings of each feature

and component in the software.

3) Development: In this phase, the design is

implemented using code. Developers in

organizations typically follow standard

development guidelines to ensure consistency and

quality. Developers ensure that all the functional

requirements & technical specifications are aligned

with the planned design.

4) Testing: In this phase, the software is

tested rigorously to ensure the software executes

smoothly. This phase also aims to identify probable

flaws, fix them & retest the application. This

ensures that the final product is free from defects.

5) Deployment: In this phase, the product is

released in phases as per the organization’s

strategy. This phase involves configuring servers,

ensuring security, and preparing the infrastructure

to run the application. Finally, the application is

released in the production environment and made

available to end users.

6) Maintenance: In this phase, the software

enters the maintenance phase. Regular updates are

applied to keep the software up to date and secure.

Issue that arises are addressed promptly and

resolved. Enhancements are made based on the user

feedback to continuously improve the user

experience.

Although these phases are typically handled by

separate teams, an overarching goal is to streamline

them to reduce time, cost, and human error. By

automating in the SDLC, the aim is to reduce

manual intervention and accelerate delivery [2].

1.2 The Role of GenAI Tools in Automating the

SDLC:

With the rise of Artificial Intelligence, especially

Generative AI (GenAI), significant improvements

have been made in automating various aspects of

software development. GenAI powered tools excel

at automating tasks which require human effort.

GenAI tools offer numerous advantages across the

stages of SDLC by automating routine tasks,

improving productivity and efficiency [3]. The

automation includes coding snippets, bug detection,

and testing phases, allowing developers to optimize

resource management. GenAI tools offer data-

driven insights, which allows strategic decisions

making, enabling more accurate project estimations

and improving software quality. It also helps in

optimizing deployment strategies & detect issues

during maintenance through automation. These

advantages position GenAI tools as a crucial

component of modern software development.

Tools like GitHub Copilot use AI models to suggest

code completions and generate snippets, reducing

the manual coding efforts. During the testing phase,

tools like Selenium and Testim automate the

execution of test cases, ensuing that software is

tested thoroughly. These tools also provide

comprehensive test coverage & identify the issues

to provide continuous improvement, ensuring that

software is more robust and reliable.

Additionally, AI-driven tools that help in

requirement gathering, use Natural Language

Processing (NLP) models, to analyze user

requirements and extract relevant functional and

technical requirements. Another tool called Figma,

used in design phase, lets designers work in real-

time, and makes it easier to create, test and modify

UI/UX designs with suggestions from machine

learning models.

1.3 Challenges with One-Size-Fits-All Tools

GenAI tools have evolved in such a way that they

can solve certain type of problem but not all. So,

one-size-fits-all solution for automating the SDLC

is not practical. This is because of the unique

challenges and requirements that are present in each

phase of the SDLC [4]. One tool designed to solve

one phase may not solve the other phase efficiently.

The crux of the challenge lies in the integration of

these AI tools ensuring they operate seamlessly

across multiple phases of the SDLC.

To facilitate the seamless integration of multiple

GenAI tools across the SDLC phases, a multi-agent

platform is required. This is where we will discuss

a tool called CrewAI [5], which orchestrates and

coordinate these tools effectively. Prior to exploring

the CrewAI abilities we will explore the optimal

GenAI tools required for each phase in the next

section.

2. Best-Suited GenAI Tools for Each Phase

2.1 Requirements Gathering and Analysis:

The requirements gathering and analysis serves as

the foundational phase, where the requirements for

software design and development are defined. It is

important to ensure the requirements in order to

meet the final expectations of the stakeholders &

Nikhil Sagar Miriyala, Bharath Kumar Bandaru, Prakhar Mittal, Kiran Babu Macha, Rishi Venkat, Anu Rai / IJCESEN 11-2(2025)3207-3214

3209

users. A significant portion of this stage involves

manual work that heavily relies on direct

interactions via meetings, surveys, questionnaires

and so on.

GenAI tools can be extensively used in this phase

and the reduce the amount of manual work

involved in analyzing and understanding the

business and functional requirements [6]. Essential

information is extracted using Natural Language

Processing (NLP) techniques by processing data

from documentation systems and communication

channels. Generative models enable the system

developers to begin the requirement drafting

process, ensuring accurate documentation. They

also enable the project team to create a

visualization of the requirements & enable live

simulation access while allowing for prototype

testing [7]. Two well-known tools that can greatly

optimize & automate this phase are considered

below.

1) IBM Watson Assistant: IBM Watson Assistant

AI tool offers powerful capabilities that uses natural

language to understand and interact with

stakeholders, ask to questions & extract relevant

information. It also organizes the data into

structured formats, streamlining analysis and

processing.

2) ThoughtWorks Insights: ThoughtWorks Insights

uses AI driven analysis on historical data to predict

risk and potential blockers during the requirement

gathering phase. By recognizing patterns across the

projects, it provides valuable insights into critical

factors for consideration.

2.2 Design:

In the design phase, the architecture and the user

interface design are developed based on the

requirements that are gathered and inter

relationships that were defined. These designs

visualize the system interactions between the

functional requirements. Ideally, this involves

human expertise to perform iterative adjustments to

refine the design.

GenAI tools offer advanced capabilities to enhance

architecture in the design phase. They can automate

the architectural designs, propose optimal system

design patterns, and simulate potential issues like

performance bottlenecks. By enabling predictive

design and early risk identification, they improve

the scalability and security of the application.

Furthermore, they streamline diagramming and

documentation, ensuring consistency and

efficiency. The tools listed below can be used for

automating this phase.

1) Tools based on LLM like ChatGPT can

contribute to the design and architecture of the

system design by providing suggestions,

automating the documentation, and recommending

best practices based on the project requirements. It

also helps in streamlining the process of creating

and refining the architectural decisions.

2) A visual collaboration tools, Lucidchart, enables

teams to create detailed architecture diagrams. With

the AI-driven templates and auto-layout

functionalities, it simplifies the design and

visualization of complex system architectures,

improving both collaboration and clarity.

2.3 Implementation:

In the development phase of the SDLC, the

developers write the code for the software

translating the functional requirements & design

into a working application. In this phase, the

developers start with setting up the environment,

and then writing code based on the design. This

phase is iterative, consists of code reviews,

debugging issues, and testing. Developers

collaborate with front-end and back-end

components, integrate various systems and libraries

to meet project's technical and business

specifications. The aim in this phase is to produce a

software which consist of functional requirements

and non-functional requirements, such as

scalability, maintainability, etc., for subsequent

testing and deployment.

GenAI tool elevates the process of development by

playing a key role in maintaining the superior code

quality and streamlining the coding tasks.

Developers benefit from the real-time assistance of

these tools in code completion suggestions,

function generations, and even recognizing

potential bugs or inefficiencies. Developers can use

automation to generate code for repetitive tasks, for

example in generating boiler plate code, and

optimization of complex processes [8]. The tools

listed below can be used in development phase.

1) GitHub Copilot, driven by OpenAI's GPT-3

model, assists developers by suggesting lines of

code, generating an entire function, and providing

documentation. By learning from the existing

codebase, it significantly improves developer

productivity.

2) Codex, AI tool from OpenAI, extends GitHub

Copilot’s capability and generates full code

snippets based on the description of the problem.

This tool excels in understanding complex

requirements and provides an optimized code.

2.4 Testing:

In the testing phase of SDLC, the objective is to

deliver a robust, error free product that is ready for

Nikhil Sagar Miriyala, Bharath Kumar Bandaru, Prakhar Mittal, Kiran Babu Macha, Rishi Venkat, Anu Rai / IJCESEN 11-2(2025)3207-3214

3210

deployment. Testers design a comprehensive suite

of tests including unit tests, integration tests, and

system tests. These tests aim to identify the defects

and validate the functionality of the software

application. Testers meticulously execute the tests

that cover positive, negative & out of bound

scenarios to uncover bugs, identify performance

issues, and security vulnerabilities. This is an

iterative process, involving testing, identification of

bugs, resolution of bugs and retesting, to ensure the

software's reliability and performance across

various environments.

The testing phase can be improved significantly

through automation by adoption of GenAI tools,

which substantially reduces the time and manual

effort required to execute the test suites and identify

bugs. These tools help in generating automated test

cases, performing regression testing, and

identifying potential issues proactively. Testing

tools that leverage AI can adapt to changes in the

application’s UI or code, ensuring tests remain up

to date without requiring manual intervention [9].

Below are two commonly used tools in the testing

phase:

1) Selenium, an open-source tool, facilitates the

automation of web browser interactions, enabling

testers to conduct functional and regression testing

across various browsers and platforms. Selenium

scripts adapt to changes in the application's

interfaces and ensure that web applications function

as expected.

2) Testim employs AI to automate the generation

and maintenance of automated test suites, keeping

the test scripts up to date by detecting changes

made in the UI. This simplifies the test creation

process and reduces the maintenance effort,

allowing teams to focus on more complex testing

scenarios.

2.5 Deployment:

The Deployment phase begins when the software

application passes all tests in the testing phase and

is ready for users. This phase involves the

configuration of the environment, including servers,

databases, and networks, to ensure the application

functions properly in the production environment.

Processes such as data migration, security audits,

and performance tuning may also be executed as

required. Using Continuous Integration (CI) and

Continuous Deployment (CD) pipelines, the

deployment process is often automated to provide

smooth, efficient, and frequent releases, with the

aim of minimizing downtime and disruptions to the

user and providing a stable version of the

application.

GenAI tools can mitigate the challenges that occur

in software deployment by performing automatic

configuration and handling environment installation

tasks. These technologies help in identifying and

resolving deployment issues, ensuring seamless

system-wide execution. AI-powered monitoring

tools implement pre-defined corrective measures

automatically upon detection of abnormal patterns

during deployment, thereby reducing user

disruptions and decreasing system outages.

GenAI tools are being employed in the deployment

phase to automate and optimize deployment

pipelines, thereby ensuring faster and reliable

releases. These tools help in the automation of

environment setup, configuration, and release

management, minimizing the manual effort

required for deployment tasks [10]. Through the

integration of existing CI/CD pipelines, GenAI

tools enable teams to achieve continuous delivery

of updates to production, ensuring application

stability and security. Below are two tools

commonly used in the deployment phase.

1) Jenkins, an open-source automation platform,

enables continuous integration and continuous

deployment. It automates the stages of the

deployment process, including build, test, and

deployment, allowing teams to deploy code

changes quickly and reliably across environments.

2) Docker platform uses containerization and

encapsulates the software and its dependencies into

a single, portable container. This facilitates

consistent deployment across various environments,

thereby minimizing the risk associated with

environment discrepancies.

2.6 Maintenance:

The maintenance phase involves continuous

monitoring of application, resolution of the bugs,

resolution of bugs, providing updates and

enhancements to maintain software functionality,

security and alignment with evolving user needs.

Activities such as adding new features, optimizing

performance, and ensuring compatibility with

newer technologies are integral part of this phase.

This is ongoing process throughout the software’s

lifecycle, ensuring the system reliability and

effectiveness. The aim is to address the issues

efficiently, maintain system stability and fulfill user

expectations for continuous enhancement.

GenAI tools significantly refine the maintenance

phase by automating monitoring tasks and

suggesting actionable insights through advanced

system performance analysis. While traditional

tools like Grafana and Datadog are used for metrics

and identify issues via logs, this process is often

time-consuming and prone to errors. The

Nikhil Sagar Miriyala, Bharath Kumar Bandaru, Prakhar Mittal, Kiran Babu Macha, Rishi Venkat, Anu Rai / IJCESEN 11-2(2025)3207-3214

3211

integration of GenAI enables the platform to detect

anomalies automatically, trigger alerts, and

prioritize issues based on real-time data analysis.

This integration minimizes manual intervention,

generates solutions, and helps teams to swiftly

address system health concerns to improve software

stability. Below are two tools commonly used in the

maintenance phase:

1) New Relic is an AI powered monitoring tool that

provides real-time tracking of application and

infrastructure health. This platform helps

developers and operations team to actively detect

performance bottlenecks, resource consumption

issues, and other anomalies and enable quick

resolution and continuous optimization.

2) Sentry is another popular tool for error tracking

that enables developers to quickly identify and

resolve issues in real time. It automatically captures

errors, exceptions, and crashes, providing detailed,

actionable insights into the root cause of the issue.

Sentry’s AI-driven analysis helps prioritize issues

based on their impact on the user experience,

enabling development teams to focus on the high-

priority problems first. It integrates well with both

Grafana and Datadog, allowing teams to correlate

error data with metrics for more comprehensive

monitoring.

3. Using CrewAI for Integration

3.1 What is CrewAI?

CrewAI is an advanced, open-source orchestration

framework that aims to integrate various AI agents

into a single, automated workflow. It allows

organizations to streamline complex workflows by

enabling different AI agents to work together and

execute tasks throughout the different stages of a

process that. The fundamental idea behind CrewAI

is the use of a multi-agent system, in which each

agent is responsible for a particular task within the

workflow. These agents operate independently, are

intelligent, and can execute tasks based on

established instructions, data inputs, or pre-defined

triggers from other agents [11].

3.2 Core Features

1) Agent Specialization: Each agent in CrewAI is

specifically designed to handle a particular task

within the workflow, enhancing efficiency through

specialized abilities tailored to each task.

2) Autonomy and Collaboration: Although each

agent can function independently, CrewAI can

enable collaboration, allowing for data sharing and

triggering actions across phases without manual

input.

3) Centralized Control and Monitoring: CrewAI

provides a central control panel for monitoring

agent activity, tracking progress, and ensuring

smooth workflows across multiple agents.

4) Task Coordination and Dependency

Management: CrewAI manages dependencies

between tasks, ensuring that agents perform their

duties in the correct order and trigger subsequent

actions based on task completion.

5) Intelligent Decision Making: CrewAI uses AI to

make decisions and adjust workflows based on real-

time data, ensuring the system adapts to emerging

issues or changes.

6) Scalability: CrewAI can scale to accommodate

larger projects or additional agents, maintaining

performance and reliability even as the SDLC

grows in complexity.

3.3 The Process of Multi-Agent Integration in

CrewAI

1) Configuration and Setup: The setup of a

workflow on CrewAI involves choosing the

appropriate and efficient agent for each task and

defining the instructions, triggers and conditions for

each of them to form an automated process.

2) Inter-Agent Communication: Agents use a

standardized protocol to ensure seamless data

exchange and transitions between tasks within the

workflow.

3) Task Execution: Each agent independently

carries out its designated task according to

established instructions, triggering the next agent

once its task is complete.

4) Orchestration and Workflow Management:

CrewAI's orchestration layer is used for optimizing

task order, identifies bottlenecks, and oversees

agent coordination to ensure efficient workflow

operations.

5) Feedback and Adaptation: CrewAI extracts

feedback from agents, analyzing the information to

modify workflows or task allocations as necessary,

enabling the system to adapt to changes and

improve over time.

3.4 System Design Incorporating CrewAI

Figure 1 shows a high-level system design for

SDLC Automation using CrewAI. Before

reviewing the design, below are some of the

assumptions made with respect to the enterprise

applications that could be used throughout the

automation process:

1) JiraAlign is a tool used by product teams to

provide a detailed description of the product or

feature to be delivered.

2) Outlook and Slack are generally used for

communication between product and engineering

teams, and the data retrieved from these

Nikhil Sagar Miriyala, Bharath Kumar Bandaru, Prakhar Mittal, Kiran Babu Macha, Rishi Venkat, Anu Rai / IJCESEN 11-2(2025)3207-3214

3212

applications can provide important clarifications in

addition to the description retrieved from Jira

Align.

3) Existing source code from Bitbucket can be

used for understanding the coding principles

adhered to by the organization and for any

boilerplate code that can used by the application to

be developed.

4) Confluence is a place for maintaining all

the internal documentation, which can be

extensively helpful in understanding the design

principles adhered to, the testing technologies and

any such information that can be utilized in every

phase of the SDLC process.

5) Jira for creating tasks if needed and for

analyzing any open issues that could affect the

delivery of the application to be developed.

6) IntelliJ IDE for plugging in the GitHub

Copilot Agent and developing the application code

7) Selenium for creating and running tests for

validation.

8) Grafana, Datadog and OpenSearch for

integration with Sentry agent for monitoring and

maintenance purposes.

9) Jenkins, Ansible, Terraform and Docker,

for creating infrastructure and building and

deploying the application.

Figure 1. High Level Architecture for SDLC Automation using Crew AI

Here are the high-level steps involved in SDLC

automation using the above architecture.

1) User Interface (UI):

• The User Interface acts as an entry point of

the system where users can initiate a new project or

feature for automation.

• It captures essential project details like tags,

descriptions, and relevant requirements, which are

crucial for creating processes or workflows.

• The UI acts as the control center for users

to provide input and define automation parameters,

such as what information to scrape, the scope of

tasks, or additional manual tasks.

2) Workflow Initialization Service:

• The Workflow Initialization Service is

responsible for orchestrating the initial phase of

task creation by taking the data provided by the UI

(tags, project details, etc.) and automatically

fetching the necessary information from the

enterprise applications (e.g., Outlook, Slack, Jira

Align).

• The service is responsible for creating new

workflows or processes based on the fetched data,

which are then add them to the Process Queue for

processing by the CrewAI Orchestrator

3) Data Aggregation Engine:

• The Data Aggregation Engine is

responsible for continuously learning from internal

sources like Jira, Bitbucket, and Confluence. It runs

24/7, gathering valuable insights and feedback from

the historical data of ongoing and completed

projects.

• The learnings from these tools are

aggregated in a Vector Database (Vector DB),

allowing the system to continuously update itself

with new principles, patterns, and methodologies

used across different projects.

4) CrewAI Orchestrator:

• The CrewAI Orchestrator serves as the

central controller for managing the workflow and

task execution. It monitors and processes the new

workflows created by the Workflow Initialization

Service and distributes tasks to the appropriate

agents for each SDLC phase.

• Once the new processes or workflows are

added to the Process Queue, the CrewAI

Nikhil Sagar Miriyala, Bharath Kumar Bandaru, Prakhar Mittal, Kiran Babu Macha, Rishi Venkat, Anu Rai / IJCESEN 11-2(2025)3207-3214

3213

Orchestrator kicks off the agents to perform

specific tasks, each based on the project

requirements and the learning acquired by the

system.

• Each agent (e.g., Design Agent, Dev Agent,

QA Agent, TPM Agent) uses the information stored

in the Vector DB to align their actions with existing

coding standards, project goals, and best practices

learned from Bitbucket, Confluence, and Jira.

• The orchestrator ensures that these agents

run in the correct sequence, depending on the

dependencies between tasks (e.g., design needs to

happen before development, and development

before QA). It ensures efficient handoffs and task

execution.

5) External Large Language Model (LLM)

Integration:

• While the Vector DB stores historical and

organizational knowledge, the LLM can access

external data sources and learnings, allowing the

agents to tap into real-time trends, best practices, or

research outside the organization's historical

context.

• Enhanced Decision Making: For tasks that

require deep contextual understanding or creative

solutions (e.g., code generation, document

generation, design suggestions), the LLM enhances

the agents' capabilities by providing insights or

performing specific tasks that go beyond the

internal data available in the Vector DB.

6) Enterprise Tools Integration:

• The agents integrate with appropriate tools

(eg: Grafana by SRE Agent) to execute the tasks

assigned to them.

4. Challenges and Considerations

1) Data Privacy and Security Concerns: The usage

of GenAI tools to automate the development and

maintenance of software can introduce potential

risks and concerns with respect to data privacy and

security, especially when the project involves

processing of sensitive information, PII data like

account numbers for example. Thus, it is important

to make sure that the agents being used can

incorporate strict access controls, encrypt data and

ensure compliance with privacy regulations (such

as GDPR), in order to protect data from

unauthorized access [12].

2) Ensuring Model Interpretability and

Transparency: The GenAI models that the agents

use mostly operate as “black boxes”, which makes

it difficult to understand why certain decisions are

taken. Thus, in order to gain trust in the system, it is

essential to incorporate necessary explainability

features and allow developers to analyze AI-

generated outputs. “A system that includes human

oversight can help ensure that AI-generated

decisions are justifiable” [13].

3) Continuous Learning and Adaptation: To ensure

that the GenAI models being used remain aligned

with changing project needs, new frameworks and

libraries, and evolving industry practices, they must

continuously learn from new information. This

requires implementation of strong feedback

mechanisms within the system, that would enable it

to upgrade its models and modify their behavior

over time based on real-world insights.

4) Resource Consumption and Scalability: Certain

GenAI tools that would require a large language

model in the background, can end up being

resource heavy. In such scenarios, it is essential that

the infrastructure behind these tools is scalable and

flexible to handle varying workloads. In addition,

continuously monitoring and analyzing the resource

consumption is helpful, in order to maintain cost

efficiency.

5) Human Supervision and Accountability: While

AI tools can help with complete automation, there

might be scenarios where human intervention is

necessary, particularly to verify and approve critical

decisions such as design choices, code integrations,

or deployment strategies, to make sure that they

align with business objectives, preserving

accountability and oversight [14].

5. Future Trends and Improvements

The integration of AutoML within SDLC

automation flow will further accelerate this

transformation, minimizing the challenges with

respect to model selection and tuning [15]. In

addition, we can incorporate efficient Predictive AI

systems to our design, that would allow

organizations to make informed, data-driven

decisions tied to resource allocation, risk

management, and software scalability, resulting in

more flexible and optimized development

approaches. As GenAI technologies continue to

improve, their use in automating the software

development life cycle (SDLC) is set to transform

the process of software creation and maintenance.

In addition, Quantum computing is expected to

significantly enhance GenAI's capabilities by

offering extraordinary computational power,

thereby overcoming current limitations.

6. Conclusion

In this paper, we have discussed an efficient

solution towards automating the Software

Development Life Cycle (SDLC) using CrewAI, a

cutting-edge multi-agent integration framework. By

combining and coordinating top-tier GenAI tools

Nikhil Sagar Miriyala, Bharath Kumar Bandaru, Prakhar Mittal, Kiran Babu Macha, Rishi Venkat, Anu Rai / IJCESEN 11-2(2025)3207-3214

3214

that can efficiently handle each phase of software

development and maintenance activities, CrewAI

serves as an efficient tool towards SDLC

automation, while maintaining flexibility and

seamless transitions between stages. In addition,

CrewAI framework helps with continuous

adaptation with respect to evolving project

requirements, by providing real-time feedback,

leading to continuous enhancements. Further,

CrewAI’s ability to scale-in or scale-out as needed,

makes it applicable for both straightforward and

complex projects, ensuring efficient automation of

each phase. While the issues with respect to data

privacy, security, and model interpretability still

exist, CrewAI is designed to allow transparency

and human supervision, enabling informed decision

making as needed. And, as GenAI technologies

continue to improve over time, CrewAI is well-

positioned to leverage emerging innovations such

as AutoML and Quantum Computing to further

improve SDLC automation. In summary, SDLC

automation using the combination of integrated

GenAI tools and multi-agent systems leads to a

transformative approach towards software

development.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] S, S. (2017). A Study of Software Development Life

Cycle Process Models. Social Science Research

Network. https://doi.org/10.2139/SSRN.2988291

[2] Anthony, A. R. V., Prasad, G. D., Randunuge, S. U.,

Alahakoon, S. R. A. M. P. A., Wijendra, D. R., &

Krishara, J. (2020). Software development

automation: An approach to automate the processes

of SDLC. International Journal of Computer

Applications, 175(37), 44-51.

[3] Şimşek, T., Gülşeni, Ç., & Olcay, G. A. (2024). The

Future of Software Development With GenAI:

Evolving Roles of Software Personas. IEEE

Engineering Management Review.

[4] Raghi, K. R., Sudha, K., & Sreeram, A. M. (2024,

December). Software Development Automation

Using Generative AI. In 2024 International

Conference on Emerging Research in

Computational Science (ICERCS) (pp. 1-6). IEEE.

[5] CrewAI, “Introduction,” Accessed: Feb 2025.

[Online]. Available:

https://docs.crewai.com/introduction

[6] Lakhamraju, M. V. (2024). The importance of data

analytics in business process optimization: A focus

on predictive process monitoring. African Journal

of Biomedical Research, 27(3S), 6937–6941.

https://doi.org/10.53555/AJBR.v27i3S.6645

[7] Khan, I. A., & Kumari, D. (2021). The role of

analysis phase of SDLC for small scale business

application-a review. International Journal of

Humanities, Engineering, Science and

Management, 2(01), 63-75.

[8] Jackson, V., Vaz Pereira, G., Prikladnicki, R., van

der Hoek, A., Fortes, L., Araújo, C., ... & Ramos,

D. (2025). Exploring GenAI in Software

Development: Insights from a Case Study in a

Large Brazilian Company.

[9] Maharana, T., Agrawal, N., Sharma, V., &

Alkhayyat, A. (2024, November). An Intelligent

Hybrid GenAI Model for Software Testing. In 2024

International Conference on Intelligent Computing

and Emerging Communication Technologies

(ICEC) (pp. 1-5). IEEE.

[10] Tembhekar, P., Devan, M., & Jeyaraman, J. (2023).

Role of GenAI in Automated Code Generation

within DevOps Practices: Explore how Generative

AI. Journal of Knowledge Learning and Science

Technology ISSN: 2959-6386 (online), 2(2), 500-

512. https://doi.org/10.60087/jklst.vol2.n2.p512

[11] Joshi, S. (2025). Review of autonomous systems

and collaborative AI agent frameworks.

International Journal of Science and Research

Archive, 14(2), 961-972.

[12] Tomassi, A. (2024). Data Security and Privacy

Concerns for Generative AI Platforms (Doctoral

dissertation, Politecnico di Torino).

[13] Williams, J. J., & Teal, T. K. (2017). A vision for

collaborative training infrastructure for

bioinformatics. Annals of the New York Academy of

Sciences, 1387(1), 54-60.

[14] Seghier, M. L. (2025). AI-powered peer review

needs human supervision. Journal of Information,

Communication and Ethics in Society, 23(1), 104-

116.

[15] Karmaker, S. K., Hassan, M. M., Smith, M. J., Xu,

L., Zhai, C., & Veeramachaneni, K. (2021). Automl

to date and beyond: Challenges and opportunities.

Acm computing surveys (csur), 54(8), 1-36.

https://doi.org/10.2139/SSRN.2988291
https://docs.crewai.com/introduction
https://doi.org/10.53555/AJBR.v27i3S.6645
https://doi.org/10.60087/jklst.vol2.n2.p512

