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Abstract:  
 

Chronic diseases are still one of the most common causes of death worldwide, so early 

and precise predictive models should be developed to help improve patient disease 

management and healthcare service delivery. With multi-modal medical data, including 

more prevalent structured sources like Electronic Health Records (EHR) and lab tests, to 

unstructured sources like clinical notes, wearable sensor streams, and medical imaging, 

the potential for AI-driven health analytics is enormous. Current methods, however, are 

plagued with limitations including: (1) dependence on single-modality data; (2) poor 

consideration of the missing data problem; and (3) suboptimal modelling of the inter-

modality relationship, which can lead to suboptimal performance. These problems 

demonstrate the necessity for a standard and solid mechanism to integrate multiple 

disparate data sources effectively. This paper presents MedFusionAI, a novel deep 

learning framework for multi-modal medical data fusion in the chronic disease risk 

prediction task context. The proposed model utilizes dedicated modality-specific 

encoders: MLP for EHR, LSTM for sequential lab and measurements from wearable 

devices, CNN models for various medical images, and ClinicalBERT for text to extract 

salient features. Experiments on benchmark healthcare datasets show that MedFusionAI 

effectively outperforms previous baselines and fusion models with a 98.76% accuracy 

and high precision, recall, and AUC-ROC across all risk classes. The framework also 

provides interpretability features to enable clinicians to understand the contributions of 

features. MedFusionAI provides an interpretable, scalable,  and reliable solution for 

clinical decision support systems for the timely visibility of chronic disease risks, 

improving preventive care. 

 

1. Introduction 
 

The worldwide burden of chronic diseases, 

including cardiovascular diseases, diabetes, and 

kidney diseases, is still growing and represents a 

significant challenge for public health and health 

care systems. Early risk assessment, 

identification, and intervention are essential for 

controlling morbidity, mortality, and health care 

costs. As the trend of medical data digitization, 

ranging from Electronic Health Records (EHR), 
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imaging, wearable sensor streams, lab tests, to 

clinical notes, becomes ever more apparent, there 

have been increasing opportunities to use 

artificial intelligence (AI) for more timely and 

accurate disease prediction. Recent studies show 

that deep learning holds great potential in health 

care analytics [1], [2] as exemplified in the 

recovery of complex patterns from the large and 

diverse datasets. Yet most prior work is based on 

the analysis of unimodal data, which has poor 

generalisation as it fails to capture the complexity 

of patient health. 

Studies in multimodal learning partially address 

the limitation. However, some challenges remain 

unsolved. Existing frameworks either fail to 

integrate data end-to-end, cannot cope with 

missing modalities, or lack interpretability [3, 4]. 

In addition, to the best of our knowledge, few 

existing models have a completely unified fusion 

mechanism for effective individual and 

intermodal feature representations. These 

lacunae highlight the significance of a novel and 

efficient multimodal deep learning approach in 

predicting chronic disease risks. 

This research aims to design a deep learning 

framework, MedFusionAI, to merge structured, 

sequential, textual, and visual health records to 

predict chronic disease risk levels accurately. 

The proposed framework adopts a hybrid fusion 

scheme that includes early feature concatenation 

and attention-based modality weighting to 

consider rich features and effective inter-

dependency modeling. The novel contributions 

of the work are dual-fusion architecture for 

representation learning, modality-specific 

encoders customized for health data, and support 

for incomplete data. Experimental results 

demonstrate the advantages of our framework, 

which can achieve an accuracy of 98.76%, 

outperforming the state of the art by a large 

margin. 

The main contributions of this study are as 

follows: (1) unified design unifying encoders for 

processing multi-modal healthcare data and 

hybrid fusion; (2) interpretable, scalable and 

clinically relevant system; and (3) extensive 

evaluation, including ablation studies, confusion 

matrices, cross-metric comparisons to prove the 

robustness of the framework. 

The rest of the paper is organized as follows. 

Section 2 reviews related work and introduces 

the unexplored region in multi-modal health 

prediction. Section 3 describes our proposed 

MedFusionAI methodology, including data 

preprocessing, model design, and fusion 

mechanism. The experimental setup and results 

from benchmark tests are described in Section 4. 

Section 5: Discussion and limitations of findings. 

5 Section 6 concludes the paper and proposes 

directions for future expansion of research. 

 

2. Related Work 
 

This literature review explores recent 

advancements in AI-driven multi-modal 

healthcare systems, emphasizing chronic disease 

prediction, integration, and interpretability. 

Stahlschmidt et al. [1] examined multimodal data 

fusion techniques based on deep learning for 

biological applications, suggesting a taxonomy 

and pointing to areas of possible future study. 

Steyaert et al. [2] focused on deep learning to 

handle data sparsity, interpretability, and 

standardization as it examines the benefits and 

problems of integrating multimodal biological 

data for cancer research. Fan et al. [3] reviewed 

the uses of AI and DL in sustainability, 

emphasizing how they contribute to 

environmental health, renewable energy, and the 

SDGs. Transparency, scalability, ethics, and 

energy efficiency are among the difficulties. 

Explainability, privacy, and energy-efficient AI 

model optimization should be the main topics of 

future studies. Cardoso et al. [4] presented the 

PyTorch-based platform for AI in healthcare, 

MONAI, emphasizing medical data; subsequent 

development will involve extending 

applications. Siddique and Chow [5] examined 

ML/AI uses in healthcare communication, 

including as chatbots for medical imaging, 

cancer treatment, and COVID-19 education. 

Bharadwaj et al. [6] discussed machine learning 

applications' benefits, drawbacks, and usefulness 

in healthcare IoT (H-IoT) across various 

disciplines. Schaar et al. [7] identified five major 

COVID-19 issues and suggested AI/ML 

solutions to enhance resource management, 

policy, and healthcare responses. Ghazal et al. [8] 

examined IoT and machine learning applications 

in smart cities, highlighting how they might 

enhance sustainability and healthcare 

infrastructure. Munirathnam and Kanchetti [9] 

reviewed the use of AI in managing chronic 

diseases, emphasizing the efficacy of predictive 

models and issues like interpretability and data 

protection. Xie et al. [10] focused on patient-

centered care, privacy, and upcoming difficulties 

as they examined the integration of wearable 

technology, blockchain, and artificial 
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intelligence in the management of chronic 

diseases. 

Decharatanachart et al. [11] evaluated AI-

assisted diagnostic tools for NAFLD and liver 

fibrosis, demonstrating encouraging outcomes in 

predictive value, sensitivity, and specificity; 

nevertheless, additional testing is required before 

they can be used in clinical settings. Feng et al. 

[12] examined AI and ML applications in COPD 

and asthma, emphasizing their promise in clinical 

settings and outlining next steps for successful 

deployment. Singh et al. [13] created a deep 

learning model that outperforms other classifiers 

with 100% accuracy for the early identification 

of CKD. Clinical implementation and additional 

validation may be the main topics of future 

research. Akter et al. [14] assessed seven deep 

learning models for CKD prediction, with ANN, 

RNN, and MLP showing high accuracy. Future 

research will concentrate on incorporating high-

performing models into IoMT to improve 

predictive analytics. Sarp et al. [15] related to 

using transfer learning to classify chronic 

wounds with Explainable AI (XAI). Clinicians 

can better grasp AI decision-making processes 

with the help of the model's interpretable 

outcomes. 

Krishnamurthy et al. [16] created a machine 

learning model to forecast the start of chronic 

kidney disease (CKD) using Taiwan's National 

Health Insurance data. The CNN model's 

excellent accuracy helped with resource 

management and early CKD detection. Ayesha et 

al. [17] suggested methods for managing 

healthcare data from several sources, using 

dimensionality reduction to enhance predictive 

analytics, and identifying data reduction and 

fusion difficulties. Khan and Jack [18] examined 

the use of AI and ML in healthcare to improve 

operations, diagnosis, and treatment in real-time 

while tackling ethical and privacy issues. [19] 

discussed the use of DL and big data in 

healthcare applications, emphasizing 

advancements, gaps, and potential directions for 

biomedical research. Rehman et al. [20] 

explained big data analytics' use in healthcare 

and its uses, difficulties, and possibilities to 

enhance patient care. 

Ahmed et al. [21] examined big data analytics in 

healthcare, looking at its uses, difficulties, and 

potential for further study to enhance results. 

Rehan et al. [22] examined the applications, 

advantages, and problems of AI and ML in 

healthcare predictive analytics. Ye et al. [23] 

investigated the relationship between EHR-

integrated PGHD and physician fatigue, 

highlighting important causes and possible 

remedies. Koren and Prasad [24] discussed 

privacy and security issues when incorporating 

data from wearable devices into medical systems 

and provided 6G solutions. Espinoza et al. [25] 

explained the iCoDE and iCoDE-2 initiatives, 

which are designed to incorporate glucose 

monitoring and insulin dosage information into 

EHR systems. 

Zainab et al. [26] examined the possible 

advantages, moral dilemmas, and difficulties of 

integrating wearable technology and AI in heart 

health. Reda et al. [27] addressed interoperability 

and data silos by putting out a Web Semantic-

based method for integrating and analyzing 

heterogeneous health data. Melstrom et al. [28] 

evaluated the integration of PGHD and PRO in 

surgical oncology, emphasizing the function of 

AI/ML in converting data into patient care 

models. Aaron et al. [29] standard, technological 

considerations, and clinical requirements were 

all covered in the iCoDE-2 project's discussion of 

insulin dosage data integration into EHR. 

Kormiltsyn et al. [30] investigated using 

blockchain technology to integrate PHRs and 

EHRs to overcome privacy problems, suggesting 

automatic dispute resolution in decentralized 

platforms. 

Wang and Hsu [31] incorporated wearable IoT 

and AI into long-term care with an emphasis on 

illness monitoring, prevention, and 

individualized treatment. Kormiltsyn and Norta 

[32] examined how to resolve privacy issues 

while integrating PHR and EHR across 

enterprises using blockchain and DAOs. Sattar et 

al. [33] compared to controls, this meta-analysis 

of tirzepatide's cardiovascular safety in type 2 

diabetes revealed no elevated risk of significant 

cardiovascular events. Yi et al. [34] showed how 

well the deep learning-based retinal biomarker 

(Reti-CVD) matches current risk assessment 

tools in identifying people at moderate and high 

risk for CVD. Qiu et al. [35] offered a deep 

learning framework that validates predictions 

against clinical criteria to diagnose cognitive 

deficits, including AD and non-AD dementias, 

with high accuracy. 

Nancy et al. [36] suggested a deep learning-based 

IoT-Cloud-based innovative healthcare system 

that can accurately detect cardiac disease while 

reaching excellent performance metrics. Wang et 

al. [37] examined the effects of a Mediterranean 

diet on cardiometabolic health by reviewing the 

microbiome data of 307 males, emphasizing the 
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microbial composition. Sample size is one of the 

limitations; future research might concentrate on 

more comprehensive dietary interventions and 

customized nutrition. [38] founded six new risk 

variants for Alzheimer's disease through a 

genomic association analysis. Sample variety is 

one of the limitations; more research may 

improve polygenic risk scores and study 

methodologies. Garbarino et al. [39] examined 

the immunological effects of sleep deprivation 

and how it is related to chronic illnesses. 

Knowledge gaps are one of the limitations; future 

research should concentrate on determining at-

risk individuals and causal links. Ahmad et al. 

[40] examined hazardous and heavy metals in 

soil and water, finding contamination levels 

within safety standards, but with higher risks for 

children. Limitations include changing 

contamination levels, and future studies focused 

on long-term consequences. The reviewed 

studies highlight deep learning’s growing role in 

fusing diverse medical data for chronic disease 

prediction and care enhancement. Key 

contributions span clinical decision support, 

wearable integration, blockchain privacy, and 

attention-based fusion. Challenges such as 

interpretability, generalizability, and data silos 

suggest new dimensions for future research in 

secure, explainable, and scalable healthcare AI. 

 

3. Proposed Framework 

 
This section presents the MedFusionAI 

framework, a new deep learning framework for 

predicting chronic disease risk over multi-modal 

medical data. This paper describes the data 

preprocessing pipeline, modality-specific 

encoders, a hybrid fusion approach combining 

early and attention-based mechanisms, and a 

final classification module, which together create 

a comprehensive predictive framework for real-

world healthcare applications. 

 

3.1 Overview 

 

Such a framework, termed MedFusionAI, is 

proposed to leverage heterogeneous medical 

information to predict chronic diseases. It has 

five main components: a multi-modal data 

ingestion layer, dedicated modality-specific 

encoders, a hybrid attention-based fusion engine, 

a deep classification network, and an output risk 

prediction head. The framework incorporates 

data from multiple health sources, such as 

structured EHR data, clinical lab and wearable 

sensor data time series, unstructured clinical 

notes, and imaging. These data are preprocessed 

and synchronized in time or space to be 

consistent and compatible. The preprocessed 

inputs are then processed by parallel neural 

encoders, each especially designed for the 

property of its modality. 

 
Figure 1. System Overview of the MedFusionAI Framework 
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In Figure 1 These encoders map heterogeneous 

raw inputs into fixed-length latent 

representations. The latent vectors are 

subsequently fed to a hybrid fusion module, 

where the early concatenated fusion and cross-

modal attention are combined to produce a 

complete representation feeding complementary 

and interdependent information. FC layers in the 

classification network are then refined, and this 

fused representation is refined. Lastly, a softmax 

layer generated a three-class output for the 

predicted risk level(No Risk, Low Risk, and High 

Risk). Conclusion: The modular and scalable 

structure of MedFusionAI allows it to work 

robustly under missing modalities, laying a 

foundation for the explainable and deployable 

chronic disease risk prediction under real-world 

clinical scenarios. 

  

 
Figure 2. Model Architecture of MedFusionAI 

 

Figure 2 shows the internal model architecture of 

the proposed MedFusionAI framework, which 

takes multi-modal medical input and predicts 

chronic disease risk with the help of the multi-

purpose encoders and the hybrid fusion. The 

model receives five primary data modalities: 

EHR tabular data, sequential lab test results,  

medical images, wearable sensor monitoring 

information, and unstructured clinical notes. 

Each modality is fed to a dedicated encoder 

tailored to its specific structures and semantics. 

EHR data is sent through a Multi-Layer 

Perceptron (MLP), while time-series data like lab 

results is currently fed through an LSTM-based 

encoder. Imaging data is passed 

straightforwardly to a CNN encoder while 

wearable data and clinical text are processed by 

two specialized encoders: a sequential and a 

transformer-based encoder, respectively. The 

representations of these encoders are then input 

to a fusion module, which performs primitive 

feature fusion (feature concatenation) and further 

semantic fusion (with cross-modal attention). 

Dense layers are adopted in the fusion module to 

enhance the integrated representation further. 

The concatenated feature vector is then 

submitted to a softmax-based classification head, 

which outputs the predicted risk level, which is 

defined by three classes: No Risk, Low Risk, and 

High Risk. The architecture guarantees that the 

predictions are flexible, robust, and can be 

explained, making them practical for real-world 

clinical applications. A summary of all the 

essential notations employed in the architecture 

and method of the MedFusionAI model is shown 

in Table 1. 

 

3.2 Multi-Modal Data Representation and 

Preprocessing 

 

For example, in a standard healthcare 

environment, patient-related data is acquired 

from different modalities: Electronic Health
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Table 1. Notations Used in the MedFusionAI Framework. 

Symbol Description 

𝒟, 𝑛, 𝑚 Multi-modal dataset with 𝑛 patients and 𝑚  modalities 

𝑥𝑗
(𝑖)

, 𝑦(𝑖) Modality input 𝑗  and true label for 𝑖 -th patient 

𝑥𝑒ℎ𝑟 , 𝑥𝑠𝑒𝑞 , 𝑥𝑖𝑚𝑔 , 𝑥𝑡𝑒𝑥𝑡  

 

Inputs from EHR, time-series, image, and text modalities 

ℎ𝑗 , 𝐻 Latent feature from modality 𝑗; set of all modality features 

ℎ𝑒ℎ𝑟 , ℎ𝑠𝑒𝑞 , ℎ𝑖𝑚𝑔 , ℎ𝑡𝑒𝑥𝑡 

 

Encoded features from respective modality-specific encoders 

ℎ𝑐𝑜𝑛𝑡𝑎𝑐𝑡 , ℎ𝑓𝑢𝑠𝑖𝑜𝑛 , ℎ𝑓𝑖𝑛𝑎𝑙  Feature representations after concatenation, attention, and final fusion 

𝛼𝑗   Attention weight for modality 𝑗. 

𝑦𝑝𝑟𝑒𝑑  Predicted risk probability vector (Softmax output) 

𝑊1, 𝑊2, 𝑊𝑓 , 𝑊𝑎 , 𝑏1, 𝑏2, 𝑏𝑓 Trainable weights and biases in MLP, fusion, and attention layers 

𝜎 Activation function (e.g., ReLU) 

𝕀(. )𝑤𝑐 , 𝐶 Indicator function, class weight, and number of risk categories 

ℒ, 𝜂, 𝑡 Loss function, learning rate, and final time step in LSTM 

 

 

Records (EHR), lab test reports, wearable 

sensors, medical imaging, clinical notes, etc. We 

can formally represent the multi-modal dataset as 

in Eq. 1.  

                         𝒟 =

 {(𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … . , 𝑥𝑚
(𝑖)

, 𝑦(𝑖))} 𝑛
𝑖−1

               (1) 

 

Where   𝑥𝑗
(𝑖)

  is the 𝑗- th modality input from the 

𝑖 the patient record, and  𝑦(𝑖)  ∈ { 0,1,2 } is the 

corresponding risk class label of predicted 

chronic disease: No Risk (0), Low Risk (1), and 

High Risk (2). 

 

Preprocessing is one of the most important steps 

in order to make sure every modality is 

compatible with the downstream neural encoders 

and able to give useful information. So numerical 

features like lab test values and vital signs have 

been normalized using Min-Max scaling, which 

transforms values between the [0,1] range, which 

helps stabilize the training. Trainable embedding 

layers map categorical features in the EHR (e.g., 

gender, smoking status) to dense embeddings to 

account for latent relationships. It is worth 

noting that textual data collected from clinical 

notes undergoes typical preprocessing steps 

(e.g., lowercasing, removing other memorable 

characters (punctuation), tokenizing, and 

filtering out stop-words). The processed tokens 

are then fed one by one to a pre-trained 

ClinicalBERT model, where they are converted 

into contextual embeddings to capture the 

semantics in the domain.To ensure homogeneity 

across samples, time-series data from wearable 

sensors (e.g., heart rate, activity level) are 

interpolated and resampled into fixed-length 

segments. Images such as chest X-ray images or 

MRI slices are resized to a fixed   × dimension, 

and intensity normalization is performed. They 

impute the missing data across any modality 

using k-Nearest Neighbor (KNN) interpolation 

combined with autoencoder-based learnt weights 

such that little information is lost. Additionally, 

the modality dropout strategy is used at the 

training phase to enhance robustness on missing 

records for real-world applications. 

 

3.3 Modality-Specific Feature Extractors 

 

Each data modality has its own characteristics, so 

a dedicated encoder is always needed to extract 

meaningful features. We use a simple but 

powerful Multi-Layer Perceptron (MLP) for 

tabular EHR data. The MLP transforms the input 

vector x sub e h r, element of double-struck cap 
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R, to the d  through two dense layers with 

nonlinear activations, given by Eq. 2.  

 

             ℎ𝑒ℎ𝑟  =   𝑀𝐿𝑃 (𝑥𝑒ℎ𝑟)   =
  𝜎 (𝑊2. 𝜎(𝑊1𝑥𝑒ℎ𝑟  + 𝑏1) + 𝑏2)        (2) 
 

We employ a stacked Long Short-Term 

Memory(LSTM) network for sequential data like 

laboratory results and wearable sensor readings. 

For a time-series input 𝑥𝑠𝑒𝑞 , the last layer's 

hidden state  ℎ𝑡   at the last time step is retrieved 

as in Eq. 3.  

           ℎ𝑠𝑒𝑞  = 𝐿𝑆𝑇𝑀(𝑥𝑠𝑒𝑞)   = ℎ𝑡                   (3) 

 

The medical imaging data are processed via a 

convolutional neural network (CNN) based on a 

ResNet50 backbone pre-trained on other data. 

Above is a model that captures spatial hierarchies 

and morphological patterns related to chronic 

conditions as in Eq. 4.  

 

                     ℎ𝑖𝑚𝑔  = 𝐶𝑁𝑁(𝑥𝑖𝑚𝑔)                  (4) 

 

ClinicalBERT, a variant of BERT fine-tuned for 

biomedical corpora, takes the clinical notes as 

input after preliminary processing. It generates 

semantically meaningful embeddings from text 

sequences, as in Eq. 5.  

 

    ℎ𝑡𝑒𝑥𝑡 = 𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙𝐵𝐸𝑅𝑇(𝑥𝑡𝑒𝑥𝑡)                     (5) 

 

Each encoder produces a fixed-dimensional 

representation. ℎ𝑗  ∈ ℝ𝑘   for modality index 𝑗, 

which will be fed into the fusion module 

 

3.4 Hybrid Fusion Strategy with Attention 

 

The main unique contribution of this framework 

is the proposed hybrid fusion strategy that 

couples early feature-level concatenation with 

attention-driven cross-modal weighting. Giving 

the model the chance to learn joint and 

independent contributions of multiple 

modalities. 

Let 𝐻 = {ℎ𝑒ℎ𝑟, ℎ𝑠𝑒𝑞 , ℎ𝑖𝑚𝑔, ℎ𝑡𝑒𝑥𝑡}  be the 

collection of modality-specific embeddings. For 

the early fusion part, all embeddings are 

concatenated to create a single vector as in Eq. 

7.  

                    ℎ𝑐𝑜𝑛𝑐𝑎𝑡  =

[ℎ𝑒ℎ𝑟‖ℎ𝑠𝑒𝑞‖‖ℎ𝑖𝑚𝑔‖ℎ𝑡𝑒𝑥𝑡]                     (7) 

 

At the same time, a self-attention mechanism 

computes modality-specific importance 

weights. Per modality 𝑗, we compute an 

attention score through a trainable linear 

transformation followed by softmax 

normalization as in Eq. 8.  

 

                    𝛼𝑗  =
𝑒𝑥𝑝(𝑊𝑎ℎ𝑗)

∑ 𝑒𝑥𝑝(𝑊𝑎ℎ𝑘)𝑚
𝑘−1

                      (8) 

 

The attention-weighted representation is then 

calculated as the weighted sum as in Eq. 9.  

 

                 ℎ𝑓𝑢𝑠𝑖𝑜𝑛  =

∑ 𝛼𝑗ℎ𝑗
𝑚
𝑗−1                          (9) 

 

To fully utilize both fusion strategies, the final 

feature vector is constructed by concatenating  

ℎ𝑐𝑜𝑛𝑐𝑎𝑡 and ℎ𝑓𝑢𝑠𝑖𝑜𝑛  as in Eq. 10.  

         ℎ𝑓𝑖𝑛𝑎𝑙  = [ℎ𝑐𝑜𝑛𝑐𝑎𝑡‖ℎ𝑓𝑢𝑠𝑖𝑜𝑛]           (10) 

 

The concatenated structured representation 

effectively encodes raw information, while 

higher-order inter-modal dependencies can be 

learnt to obtain the robust knowledge provider, 

thus serving as the appropriate representation for 

the kind of prediction tasks we are working on. 

 

3.5 Risk Prediction Module 

 

The fused representation   ℎ𝑓𝑖𝑛𝑎𝑙 then is 

propagated through a dense layer followed by a 

softmax activation to form a fully connected 

classifier head. This module provides the output 

probability distribution among the three risk 

classes as in Eq. 11.  

 

      𝑦𝑝𝑟𝑒𝑑 =   𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓ℎ𝑓𝑖𝑛𝑎𝑙  + 𝑏𝑓)    (11) 

 

Considering the common class imbalance in 

medical datasets, especially between low and 

high risk patients, the model is trained on impost 

weighted cross-entropy loss function. The loss ℒ 

for the whole dataset is written as Eq. 12.  

 

                 ℒ = − ∑ ∑ 𝑤𝑐 . 𝕀(𝑦(𝑖)  =𝐶
𝑐−1

𝑛
𝑖−1

𝑐) . log (𝑦𝑝𝑟𝑒𝑑
(𝑖) [𝐶])           (12) 

 

In this formulation, 𝑤𝑐 denotes the weight for 

class 𝑐, and 𝕀 is an indicator function that takes 

the value 1 if the ground truth label is equal to 𝑐, 

and 0 otherwise. 
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3.6 Training Strategy and Optimization 

 

We train the model in an end-to-end fashion 

using the Adam optimizer with an initial learning 

rate of  𝜂 = 1 × 10−4We trained 100 epochs 

with a mini-batch size of 32. Dropout 

regularization was applied to prevent overfitting, 

with a dropout rate of 0.5 in the dense layers. 

Early stopping is triggered if validation loss does 

not improve for 10 consecutive epochs. 

L2 regularization is also applied on all trainable 

parameters to help with generalization. To model 

real-world missing data scenarios, random 

modality dropout is adopted during training to 

promote robustness in fusion. This provides a 

final model that can accommodate different 

input combinations while preserving predictive 

reliability. 

 

3.7 Proposed Algorithm 

 

The proposed algorithm outlines the end-to-end 

workflow of the MedFusionAI framework, 

which integrates multimodal medical data for 

accurate chronic disease risk prediction. It 

captures the complete pipeline—from 

preprocessing and modality-specific encoding to 

hybrid fusion and classification—leveraging 

attention mechanisms and softmax-based 

prediction. This algorithm ensures robust feature 

integration and supports real-world applicability 

in clinical decision-making. 

 

 

Algorithm: MedFusionAI – Multi-Modal Chronic Disease Risk Prediction 

Input: Multi-modal inputs  𝑥𝑒ℎ𝑟 , 𝑥𝑠𝑒𝑞 , 𝑥𝑖𝑚𝑔, 𝑥𝑡𝑒𝑥𝑡 

Output: Predicted risk level 𝑦𝑝𝑟𝑒𝑑 ∈ {0,1,2} 

1. Normalize 𝑥𝑒ℎ𝑟, encode categorical features using embeddings 

2. Resample and interpolate 𝑥𝑠𝑒𝑞 Resize and normalize 𝑥𝑖𝑚𝑔 

3. Tokenize 𝑥𝑡𝑒𝑥𝑡Generate contextual embeddings using ClinicalBERT 

4. Encode each modality: 

                                                                ℎ𝑒ℎ𝑟 ← 𝑀𝐿𝑃(𝑥𝑒ℎ𝑟) 

 ℎ𝑠𝑒𝑞   ← 𝐿𝑆𝑇𝑀(𝑥𝑠𝑒𝑞) 

 ℎ𝑖𝑚𝑔   ← 𝐶𝑁𝑁(𝑥𝑖𝑚𝑔) 

                                                                 ℎ𝑡𝑒𝑥𝑡  ← 𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙𝐵𝐸𝑅𝑇(𝑥𝑡𝑒𝑥𝑡) 

5. Compute early fusion: ℎ𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ← [ℎ𝑒ℎ𝑟‖ℎ𝑠𝑒𝑞‖ℎ𝑖𝑚𝑔‖ℎ𝑡𝑒𝑥𝑡‖] 

6. Compute attention weights 𝛼𝑗  for each modality 

7. Generate attention-based fusion: ℎ𝑓𝑢𝑠𝑖𝑜𝑛  ← ∑ 𝛼𝑗ℎ𝑗𝑗  

8. Concatenate: ℎ𝑓𝑖𝑛𝑎𝑙 ← [ℎ𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ‖ℎ𝑓𝑢𝑠𝑖𝑜𝑛] 

9. Predict: 𝑦𝑝𝑟𝑒𝑑 ← 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓ℎ𝑓𝑖𝑛𝑎𝑙 + 𝑏𝑓) 

10. Compute weighted loss ℒ using ground truth 𝑦. 

      11. Return: 𝑦𝑝𝑟𝑒𝑑
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Algorithm 1: MedFusionAI – Multi-Modal Chronic Disease Risk Prediction 

 

Algorithm 1 outlines the core pipeline of the 

proposed MedFusionAI framework, which 

integrates multiple heterogeneous medical data 

sources to predict chronic disease risk levels with 

high accuracy. The algorithm's input includes 

four primary modalities: tabular Electronic 

Health Record (EHR) data, time-series data (such 

as laboratory tests and wearable device readings), 

medical imaging data (e.g., X-rays), and 

unstructured clinical text data. Each modality 

undergoes modality-specific preprocessing and 

encoding before fusion. 

The EHR data is initially normalized, and 

categorical variables are converted into dense 

embeddings through trainable embedding layers. 

The time-series data is interpolated and 

resampled to a fixed length to ensure temporal 

consistency. In contrast, image data is resized 

and normalized to meet the input requirements of 

the CNN-based encoder. Textual clinical notes 

are preprocessed and passed through a 

transformer-based encoder (ClinicalBERT) to 

generate contextual embeddings. 

Each of these processed modalities is passed 

through its corresponding encoder: MLP for 

EHR, LSTM for time-series data, CNN for 

imaging, and BERT for textual data. The outputs 

of these encoders—modality-specific feature 

vectors—are then fused through a hybrid 

approach. First, early fusion is performed by 

concatenating all feature vectors into a single 

representation. Second, a modality attention 

mechanism computes attention weights across 

the different modality features to generate an 

attention-weighted fusion representation. These 

two fusion outputs are concatenated to form the 

final comprehensive representation of the 

patient. 

This final fused vector is input to a fully 

connected layer followed by a softmax activation 

function to produce a probability distribution 

over the chronic disease risk levels: No Risk, 

Low Risk, and High Risk. During training, a 

weighted cross-entropy loss is computed, which 

accounts for class imbalance in the dataset. The 

model is optimized using the Adam optimizer, 

with dropout and regularization applied to 

prevent overfitting. The algorithm supports 

missing modalities by using dropout-based 

simulation during training, enabling the model to 

generalize effectively in real-world healthcare 

settings. This approach ensures that 

MedFusionAI is highly accurate but also robust 

and scalable for deployment in clinical decision 

support systems. 

 

4. Experimental Results 

 
The experimental evaluation of the proposed 

MedFusionAI framework was conducted using 

publicly available healthcare datasets [41] 

containing multi-modal patient information, 

including EHR records, lab results, clinical notes, 

wearable sensor data, and medical images. All 

experiments were implemented in Python using 

the PyTorch deep learning library. The training 

and inference were performed on a system with 

an Intel Xeon processor, 64GB RAM, and an 

NVIDIA Tesla V100 GPU with 32GB memory 

running Ubuntu 20.04. CUDA and cuDNN were 

configured for GPU acceleration. To ensure 

consistency and reproducibility, the dataset was 

split into training (70%), validation (15%), and 

testing (15%) sets using stratified sampling to 

maintain the distribution of the target risk classes 

across all subsets. 

Hyperparameters were tuned systematically 

based on validation performance. The batch size 

was set to 32 for all models, and the learning rate 

was initialized to 0.0001. The Adam optimizer 

was used with beta1 = 0.9 and beta2 = 0.999. 

Dropout with a rate of 0.5 was applied after all 

fully connected layers to prevent overfitting. 

Each modality-specific encoder was fine-tuned 

separately before being integrated into the 

complete MedFusionAI architecture. The model 

was trained for 100 epochs with early stopping 

enabled if the validation loss did not improve for 

10 consecutive epochs. Weight initialization 

followed by Xavier uniform distribution for all 

linear layers. Textual data were embedded using 

ClinicalBERT, while image features were 

extracted via ResNet50 pretrained on ImageNet 

and then fine-tuned on the medical dataset. Time-

series data from wearable sensors and lab results 

were passed through a two-layer LSTM with 

hidden sizes of 128 and 64. 

The complete source code, hyperparameter 

settings, and pretrained model checkpoints are 

maintained in a version-controlled repository 

with detailed documentation to support 

reproducibility. The prototype application 

includes data loading utilities, preprocessing 

pipelines for each modality, model training and 

evaluation scripts, and interactive visualization 
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modules for attention weights and predictions. 

Instructions for setting up the environment using 

Conda and seed control for deterministic 

execution are also provided to enable researchers 

to replicate the results precisely. 

 

4.1 Exploratory Data Analysis 

 

This section shows the exploratory data analysis 

of the multi-modal healthcare dataset. It 

showcases important data distributions and 

trends across risk patterns for features like age, 

glucose, blood pressure, activity levels, and 

gender through various visualization techniques. 

These findings confirm the importance of each 

modality and are beneficial to the design of the 

MedFusionAI framework for precise disease risk 

prediction. 

Figure 3. Exploratory Data Analysis of the Multi-Modal Healthcare Dataset 

 

Figure 3 shows exploratory data analyses that 

illustrate broad patterns across levels of risk for 

chronic disease. Older age, higher glucose and 

blood pressure, and lower physical activity are 

associated with higher risk. The visualizations 

also confirm the incorporation of diverse 

modalities in MedFusionAI and hence the 

importance of each feature in estimating health 

outcomes and rationalizing the multimodal 

design of the framework. 

 

4.2 Results and Performance Comparison 

with Baselines 

 

This section describes our results on 

MedFusionAI's performance and comparison 

with several competitive baselines, including 

unimodal and fusion-methods-based methods. It 

provides quantitative results of raw data 

regarding different performance indicators, such 

as accuracy, precision, recall, F1-score, and 

AUC-ROC. The experimental results prove that 

the proposed framework achieves the best 

performance, confirming the effectiveness of its 

multi-modal and hybrid fusion schemes. Figure 

4 Training versus validation accuracy of 

MedFusionAI model for 20 epochs. Both 

accuracy curves improve steadily and plateau at 

a final value of 98.76%, demonstrating good 

model generalization and little overfitting. The 

nearly identical performance of the training and 

validation datasets suggests the stability and 

generalization of our framework on multi-modal 

chronic disease risk prediction. 
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Figure 4. Training and Validation Accuracy Dynamics of MedFusionAI 

 

 

 

 

 

 

Figure 5. Training and Validation Loss Dynamics of MedFusionAI 

 

Figure 5 shows the change in training and 

validation loss across 20 epochs for the 

MedFusionAI model. The two curves show 

continuous trends of decrease, with the loss value 

tending to zero, indicating that the model's 

learning and optimization are effective. The close 

proximity between training and validation loss 

validates the framework's excellent 

generalization and drastically low risk of 

overfitting. 
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Figure 6. Confusion Matrices of All Compared Models 

 

Figure 6 visualizes the confusion matrices of all 

eight models, highlighting their performance in 

identifying the three chronic disease risk 

categories. MedFusionAI exhibits the best 

accuracy with the fewest wrong placements, with 

an upper hand in high-risk patient categorization 

in particular. Confusion between class labels is 

higher in traditional and unimodal models, 

highlighting the role of multi-modal fusion in 

improving diagnostic performance and class 

separation. 

 

 
Table 2. Performance Comparison of MedFusionAI with Baseline Models 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC-ROC 

(%) 

Logistic Regression (EHR 

only) 

84.32 83.10 82.45 82.77 87.95 

Random Forest (EHR + Labs) 88.91 87.65 87.22 87.43 90.10 

CNN (Imaging only) 90.26 89.80 88.35 89.07 91.87 

LSTM (Time-Series only) 91.14 90.23 89.70 89.96 92.40 

ClinicalBERT (Text only) 89.87 88.90 88.30 88.60 91.35 
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Early Fusion (All Modalities) 94.62 93.88 93.21 93.54 95.12 

Attention Fusion (No Early 

Fusion) 

96.04 95.45 94.87 95.16 96.38 

MedFusionAI (Proposed) 98.76 98.30 97.95 98.12 99.18 

 

Table 2 demonstrates superior performance over 

traditional and deep learning baselines for the 

proposed MedFusionAI framework. Aggregating 

multiple modalities and adopting a hybrid 

attention-based fusion mechanism, 

MedFusionAI attains an impressive accuracy of 

98.76%, with high precision, recall, and AUC-

ROC. These findings support its utility for 

vigorous and consistent prediction of chronic 

disease risk. 

 
Figure 7. Metric-wise Performance Comparison of MedFusionAI with Baseline Models 

 

Figure 7 provides a complete overview of the 

metric-wise performance comparison for the 

proposed MedFusionAI framework and multiple 

baseline models, where different baseline models 

correspond to different fusion strategies and 

unimodal learning methods. Subplot (a) shows 

the classification accuracy with various models. 

To give an in-depth insight, in this study, 

MedFusionAI obtains the superior accuracy of 

98.76% and surpasses other conventional models 

like logistic regression (84.32%) and advanced 

neural architectures like LSTM (91.14%) and 
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CNN (90.26%) when utilized with a single 

modality. This indicates the robustness of multi-

modal information fusion for an improved 

reliability in overall classification. 

Subplot (b) demonstrates precision as a function 

of the model for preventing false positives. Once 

again, MedFusionAI is the highest performer at 

98.30%, indicating its better performance in 

recognizing at-risk patients while reducing false 

alarms. Early Fusion and Attention Fusion 

achieved relatively good precision (93.88% and 

95.45%, respectively); however, they are still 

lower than the performance of our framework, 

highlighting the usefulness of both early 

concatenation and attention mechanisms. 

Subplot (c) focuses on recall—the sensitivity of 

the model, i.e., how well the model can detect 

actual positive cases. MedFusionAI achieves a 

recall of 97.95%, demonstrating that it is able to 

identify almost all of the high-risk patients. This 

is especially important in healthcare, where false 

negatives may carry profound implications. The 

nearest competing model, Attention Fusion, got 

94.87%, and traditional unimodal baselines are 

easily surpassed. 

Subplot (d) shows the F1-score, a harmonic mean 

of precision and recall, and is popularly regarded 

as the best single metric for comparing models in 

imbalanced datasets. MedFusionAI continues to 

dominate the results, achieving an F1-score of 

98.12%, demonstrating its relatively even 

performance across error types. The baselines, 

Random Forest and ClinicalBERT, achieve 

inferior performances (87.43% and 88.60%, 

respectively), suggesting their incapability of 

capturing holistic patient data. 

In Subplot (e), we assess AUC-ROC, a threshold-

independent measure of the area under the 

receiver operating characteristic curve. 

MedFusionAI has an AUC value of 99.18%, 

indicating its high capability of distinguishing 

risk classes. Although other approaches like 

Attention Fusion (96.38%) and Early Fusion 

(95.12%) achieve acceptable accuracy, they are 

outperformed by the introduced architecture in 

terms of risk levels under different thresholds. 

In Figure 7, we have visually shown the 

effectiveness of the MedFusionAI framework in 

terms of multiple evaluation metrics. The 

performance over various metrics establishes the 

value of fusion of warping and derivative 

techniques and modality-specific feature 

extraction. It demonstrates how clever use of 

structured, sequential, visual, and text data can 

help achieve a more sophisticated and clinically 

relevant predictive model. These results indicate 

that MedFusionAI is accurate, sensitive, and 

generalizable, making it desirable for practical 

deployment in real-world chronic disease risk 

assessment applications. 

 

4.3 Ablation Study 

 

This section presents an ablation study to 

evaluate the contributions of different parts in the 

MedFusionAI framework. By gradually 

disabling and revising the modalities and fusion 

mechanisms, the study proves the necessity of all 

the components. We can conclude that the full 

hybrid model (combining all modalities) gives 

the best performance on all evaluation metrics, 

consistent across results. 

  
Table 3. MedFusionAI Performance Comparison Across Modalities 

Model Variant Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC-ROC 

(%) 

Only EHR Modality (MLP) 84.32 83.10 82.45 82.77 87.95 

All Modalities + Early Fusion Only 94.62 93.88 93.21 93.54 95.12 

All Modalities + Attention Fusion 

Only 

96.04 95.45 94.87 95.16 96.38 

All Modalities – No Clinical Text 

(no BERT) 

96.48 95.60 95.00 95.29 96.81 

All Modalities – No Imaging (no 

CNN) 

95.87 94.92 94.10 94.51 95.96 
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All Modalities – No Wearable Data 

(no LSTM) 

95.32 94.40 93.70 94.04 95.42 

Full Model (MedFusionAI) 98.76 98.30 97.95 98.12 99.18 

 

Table 3 summarizes the ablation study results 

and illuminates each component's contribution to 

MedFusionAI’s performance. Deleting any 

modality or fusion mechanism will cause the 

performance to decline significantly regarding 

accuracy and other factors. The complete model, 

which combines all modalities via hybrid fusion, 

surpasses all the reduced models and indicates 

the necessity of holistic multi-modal learning for 

chronic disease risk prediction. 

Figure 8. Ablation Study Performance Metrics Across Model Variants 

 

Figure 8 shows an overall view of MedFusionAI's 

ablation study results, showing how removing or 

changing key components influences the model's 

performance in terms of five evaluation metrics: 

accuracy, precision, recall, F1 score, and AUC-

ROC. For each subplot (a) to (e), one metric 

compares the entire model to six reduced or 

modified versions. 

In subplot (a), it is clear that the best accuracy is 

achieved by the entire model, using 98.76%,  which 
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is considerably higher than all of its ablations. The 

most significant performance decrease is observed 

with the EHR modality only (84.32%), showing that 

single-modality models have insufficient depth of 

understanding for complex disease prediction tasks. 

The early fusion-only variant (94.62%) and attention 

fusion-only variant (96.04%) compete, but do not 

reach the entire model, employing both strategies for 

combined gain. 

In Figure 8 (b), we show the precision (this time, 

MedFusionAI is the leader with a precision of 

98.30%, meaning that it can control the false 

positives). Precision decreases monotonically with 

removing any modality (clinical text, imaging, 

wearable data), highlighting the necessity of 

preserving the overall multi-modal context. For 

example, dropping the clinical text reduces the 

precision accuracy to 95.60%, indicating that 

semantic understanding from textual notes would be 

indispensable. 

Subplot(c) demonstrates the corresponding recall 

scores, where MedFusionAI is 97.95%, 

demonstrating its sensitivity to positive cases. This 

is particularly important in healthcare,  since 

overlooking the high-risk patients could lead to 

disastrous results. All the reduced variants show a 

decrease in recall, mainly when removing wearable 

data (93.70%), demonstrating the added value of the 

temporal signals from continuous health tracking. 

In subplot (d),  the F1 Score is a balanced measure 

of precision and recall. MedFusionAI holds the first 

place, scoring 98.12%. All other versions have 

somewhat lower average F1 Scores, and this is a 

consequence of the accumulated effect of even slight 

degradation of either precision or recall (caused by 

either a less powerful model or incomplete data 

representation). 

Subplot (e) represents the AUC-ROC that indicates 

the model's ability to discriminate across all 

classification thresholds. MedFusionAI achieves an 

AUC of 99.18%,  demonstrating that the 

distribution of all risk categories has a nearly perfect 

separation. It is also interesting to note that the 

attention fusion-only model performs closely at 

96.38% but is still inferior to the trade-off decision 

in the complete model. Removing a modality results 

in a slight decrease in AUC, confirming the 

importance of multi-modal data integration. 

In summary, Figure 8 provides strong empirical 

evidence that every component of the MedFusionAI 

framework can meaningfully contribute to its 

predictive performance. The ablation results confirm 

the necessity of the hybrid fusion mechanism and 

multi-modal architecture in producing robust, 

generalizable, and clinically effective predictions of 

chronic disease risk. 

 

5. Discussion 

 
Chronic diseases continue to be a significant health 

burden worldwide, accelerating the demand for early 

prediction and intervention based on innovative 

data-driven solutions. The rapid progress in artificial 

intelligence (AI) and particularly deep learning1 

has made it possible to develop predictive models 

using healthcare data to perform timely risk 

predictions. Nevertheless, a meticulous study of 

related works shows some drawbacks still exist in 

the state-of-the-art techniques. Many studies work 

with unimodal data, such as EHR, imaging, or 

clinical text alone, and suffer from incomplete 

representations of patient health. Moreover, the 

traditional fusion methods may not be sufficient to 

effectively consider cross-modal dependencies and 

face the challenges of scalability, interpretability, 

and robustness over missing or sparse modalities. 

To address these challenges, we propose 

MedFusionAI for the first time, a new deep learning 

framework, which not only fuses different sources of 

medical data—structured, unstructured, sequential,  

and visual—through modality-specific encoding and 

a hybrid attention fusion mechanism. The design is 

capable of not only capturing cross-modal 

relationships with cross-modal attention but also 

preserving individual modality information with 

early fusion. This two-level integration is an 

advanced methodology that can achieve enhanced 

feature representation and generalization. 

Experimental results demonstrate that 

MedFusionAI’s outstanding accuracy on multi-class 

risk forecast is 98.76%. Extensive experiments -- 

confusion matrices, comparisons between different 

metrics, and ablation studies -- demonstrate that each 

model component is practical. Performance of 

MedFusionAI consistently outperforms baselines in 

precision, recall, and discrimination, especially in 

high-risk classification. This method overcomes 

several shortcomings of the existing literature by 

providing greater fusion flexibility, robustness to 

missing modalities, and better clinical 

interpretability. 

The implications of this work are broad and may 

include real-time clinical decision support. 

MedFusionAI provides a scalable and deployable 

system that can convert raw multi-modal health data 

into actionable chronic disease counterparts. 

Limitations for the study, both real-world and 

generalization scope, are given in 5.1 for the reader 

to remember. 

 

5.1 Limitations of the Study 

 

Although MedFusionAI shows excellent predictive 

performance, this study had a few limitations. First, 
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the performance is validated using simulated and 

benchmark datasets, which do not cover the full 

spectrum of variability in clinically collected data. 

Secondly, even though the model is robust regarding 

missing modalities at training time, it has not been 

thoroughly tested when dealing with highly data-

sparse settings. Third, our fusion strategy is effective 

but assumes the uniform temporal alignment 

between the modalities, which is not necessarily the 

case. These limitations suggest topics that could be 

studied to improve applicability in real-world 

settings, robustness under sparse conditions, and 

towards temporal synchronization in multi-modal 

clinical prediction applications. 

 

6. Conclusion And Future Work 

 
This paper introduces MedFusionAI, a new deep 

learning-based framework, aiming at robust chronic 

disease risk prediction by multi-modal health data 

fusion. By combining structured,  sequential, 

textual, and visual information with modality-

specific encoders and a hybrid attention-based 

fusion mechanism, the proposed architecture can 

effectively model complex interdependencies 

between different patient information sources. The 

proposed model significantly outperforms state-of-

the-art baselines by obtaining 98.76% classification 

accuracy with high precision and recall for risky 

categories. The findings confirm the value of 

multimodal fusion in improving premature 

prediction and clinical decisions. While 

demonstrating several strengths, the study 

recognizes its limitations in real-world variability of 

data, extremely modalities sparse in number and 

temporal misalignment, as explained in Section 5.1. 

This is the challenge of this paper in future aspects. 

A crucial future direction is experimenting with 

MedFusionAI in real-time clinical scenarios 

involving real EHR systems and IoT medication 

flows. Third, it is also a good direction to further 

improve the model’s temporal sensitivity with a 

dynamic alignment approach in the multimodal 

space. Moreover,  federated learning can facilitate 

the deployment of MedFusionAI among privacy-

conscious and distributed healthcare solutions. In 

sum, this work provides a scalable, accurate, and 

clinically meaningful approach that pushes forward 

the frontier of predictive analytics for chronic 

disease management based on deep learning and 

multimodal intelligence. 
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