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Abstract:  
 

This paper presents the design and implementation of a ROS 2-based UAV syste m for 

real-time video streaming and intelligent ground station processing. The proposed 

architecture integrates a Raspberry Pi 3 onboard computer with a Jetson Orin Nano 

ground station over a wireless network. Video is captured and encoded using GStreamer 

on the UAV, streamed over UDP, and decoded on the ground station for real-time 

object detection using the YOLOv8-seg model. ROS 2 middleware facilitates 

synchronized telemetry and camera communication between the UAV and ground 

station via DDS topics. The system demonstrates low-latency video transmission (∼105 

ms), high streaming frame rate (30 FPS), and real-time object detection at 28–30 FPS 

with an average precision of 81.2%. The modularity of ROS 2 enables easy integration 

of additional perception, control, and autonomous decision-making modules. 

Experimental results validate the system’s performance for surveillance and inspection 

tasks, showcasing the potential of open-source middleware and embedded AI for edge-

enhanced UAV applications. 

 

1. Introduction 
 

Camera-equipped unmanned aerial vehicles 

(UAVs), commonly known as drones, have become 

essential tools in numerous industrial and service-

oriented applications such as aerial surveillance, 

industrial inspections, and search and rescue 

operations [1]. These applications necessitate the 

capability for real-time video streaming and 

immediate data processing to facilitate rapid 

decision-making. In recent years, Robot Operating 

System version 2 (ROS 2) has emerged as a 

standard software platform in modern robotics 

research and applications, including autonomous 

vehicles and drone systems [2]. For instance, in the 

domain of autonomous driving, ROS 2 is widely 

adopted in academic research, creating a need for 

compatibility between ROS 2 and traditional 

industrial frameworks such as AUTOSAR [2]. 

ROS 2 provides an infrastructure based on Data 

Distribution Service (DDS), enabling flexible 

communication among distributed robotic 

components with quality-of-service (QoS) 

assurances [3]. This characteristic makes ROS 2 

suitable for cloud robotics applications, where 

physical hardware and cloud-based processing are 

decoupled [4], leveraging external processing 

capabilities (such as cloud servers or edge 

computers) for handling video streams and other 

sensory data. However, streaming high-quality 

video from drones introduces specific challenges 

regarding network bandwidth, latency, and 

stability. Transmitting raw camera images directly 

via ROS is inefficient, requiring approximately 25 

MB/s to send color video with depth at 30 frames 

per second [5]. Although ROS provides tools for 

image compression (e.g., JPEG/PNG) to reduce 

data size, simple compression techniques may not 

suffice to achieve smooth, low-latency streaming. 

Alternative video streaming solutions have been 

explored within cloud robotics contexts. For 

example, Balogh et al. proposed efficient video 

transmission methods for cloud robotic systems, 

emphasizing the importance of balancing camera 
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quality and latency in wireless networks [6]. 

Previous studies also highlighted the benefits of 

advanced video encoding standards (such as 

H.264), which significantly improve video 

streaming efficiency compared to transmitting 

individual images [7]. In multi-drone environments, 

Kilic et al. (2024) developed a multi-UAV 

surveillance and control platform employing 

WebRTC protocol for real-time video streaming to 

cloud-based stations, enabling bidirectional control 

[8]. Their platform utilized GStreamer on the drone 

(Nvidia Jetson Nano) for efficient video encoding 

and wireless transmission alongside telemetry data 

through a WebRTC data channel [8]. This approach 

achieved low latency and simultaneous multiple 

video streams due to hardware acceleration on the 

onboard platform [8]. 

Conversely, our proposed system offers an 

alternative solution based purely on ROS 2 

architecture for video and data transmission, 

facilitating seamless integration with other robotic 

nodes. Additionally, an efficient detection 

algorithm (YOLOv8-seg) running on a powerful 

computing platform (Jetson Orin) is employed to 

achieve real-time inference on visual data [9], [10]. 

The objective of this paper is to present a 

methodology for building a drone video streaming 

and control system using ROS 2, capitalizing on 

GStreamer's capabilities in encoding and streaming 

[7], and the embedded processing power of Jetson 

Orin for running advanced AI models [9], [10]. 

Figure 1 illustrates the proposed system's 

architecture, 

 

 Figure 1.  Proposed system's architecture 

 

depicting the integration of the UAV and the 

ground station components. The previous relevant 

works are reviewed and critically compared, and 

then the proposed system's technical architecture is 

described, including its software and hardware 

components. Subsequently, preliminary 

performance results such as streaming latency, 

frame rates, and face detection accuracy obtained 

through field experiments will be presented and 

discussed in comparison with prior studies. Finally, 

by drawing insights and suggesting future research 

directions in this field, are conclude. 

 

2. Literature Review 

 
Recent literature highlights the increasing 

integration of middleware technologies such as 

ROS 2 with autonomous UAV platforms to 

enhance modularity and scalability. For instance, 

the work by Bormann et al. demonstrated the 

deployment of ROS 2 in large-scale multi-robot 

systems, showing its scalability in high-demand 

robotic environments [11]. Similarly, Erle Robotics 

provided a comprehensive guide to implementing 

UAV flight stacks using ROS 2 with PX4, 

emphasizing practical challenges related to latency 

and message handling [12]. 

Video streaming in aerial robotics continues to 

evolve with the adoption of GStreamer and 

WebRTC frameworks. Studies have shown the 

efficiency of GStreamer in handling real-time video 

pipelines with encoding formats such as H.264 and 

VP8 [13]. The use of GStreamer for adaptive 

streaming in dynamic network environments was 

highlighted in [14], where UAVs were tested under 

varying Wi-Fi conditions with successful bitrate 

adaptation. 

Parallel to the middleware and streaming efforts, 

advancements in onboard vision processing have 

allowed UAVs to conduct edge inference using 

lightweight AI models. YOLOv5 and YOLOv8 are 

among the most referenced models for embedded 

platforms. Researchers in [15] deployed YOLOv5s 

on NVIDIA Jetson Nano for pedestrian detection in 

urban environments with a frame rate of 15–20 

FPS, while [16] discussed the power-performance 

tradeoffs in running YOLOv8 on Jetson Orin Nano. 

Another significant contribution is the hybrid 

deployment of inference models using ROS 2 

bridges, where [17] described a ROS 2-to-Tensorrt 

communication bridge enabling rapid deployment 

of vision tasks on edge devices. Furthermore, [18] 

implemented facial expression recognition using a 

compressed YOLO model on Raspberry Pi 4, 

optimising for limited GPU capability. 

In summary, the literature collectively confirms the 

trend towards integrating ROS 2, efficient video 

streaming, and edge AI in UAVs to reduce latency, 

enhance autonomy, and expand application 

domains such as surveillance, agriculture, and 

emergency response. 

 

3. Methodology / System Design 
 

3.1 Overview 
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Figure 2: Full system architecture integrating the 

UAV and ground station. The proposed system 

comprises a Raspberry Pi 3-based quadcopter UAV 

and a Jetson Orin-based ground station, networked 

via a wireless LAN. The overall design offloads 

computationally intensive vision processing to the 

ground station while the UAV handles sensing and 

low-level control. The UAV’s onboard computer 

runs the Robot Operating System 2 (ROS 2) for 

inter-process and inter-device communication, a 

middleware commonly used on UAV companion 

computers for advanced tasks[18]. The ROS 2 

framework allows the UAV to publish telemetry 

data (e.g. IMU, GPS) and send the real-time video 

feed to the ground station. In turn, the Jetson Orin 

ground station subscribes to the incoming telemetry 

and video streams, performing real-time object 

detection with a YOLOv8 model. The system is 

structured to maximize the UAV’s flight time and 

responsiveness by delegating heavy AI 

computations to the more powerful ground station. 

Figure 2 provides a high-level block diagram of this 

architecture, showing the UAV’s onboard sensors 

and camera streaming data to the ground station, 

where the ROS 2 and AI processing pipeline 

resides. 

 
Figure 2. Full system architecture integrating the UAV 

and ground station 

 

3.2 Hardware Architecture 

 

The UAV platform is built around a Raspberry Pi 3 

Model B as the companion computer. The Pi is 

interfaced with the drone’s sensors (IMU, 

barometer, GPS, etc.) The Raspberry Pi 3 interfaces 

with the Radiolink Crossflight Flight Controller via 

UART using GPIO14 (TX) and GPIO15 (RX) for 

bidirectional communication. GPIO14 transmits 

commands like waypoints, while GPIO15 receives 

telemetry data such as altitude and GPS. A shared 

GND connection ensures signal stability and 

minimises interference, and a Pi Camera module 

mounted for live video capture throw connect a CSI 

camera cable. It also interfaces with the drone’s 

flight controller or ESCs to relay high-level 

commands (the flight control hardware is assumed 

to handle stabilisation and motor mixing). The 

Raspberry Pi 3 was chosen for its lightweight and 

adequate I/O capabilities, although its processing 

power is limited (1.2 GHz quad-core ARM CPU, 

1 GB RAM). Its role is primarily to collect sensor 

readings and camera frames and forward them to 

the ground station rather than perform intensive 

computation onboard. On the ground, an NVIDIA 

Jetson Orin serves as the base station computer. 

The Jetson Orin features a powerful GPU (based on 

NVIDIA’s Ampere architecture with Tensor Cores) 

capable of up to 275 trillion operations per second 

(TOPS) in AI throughput (in the 64GB AGX Orin 

model) [18] – even the compact Orin Nano module 

delivers up to 67 TOPS, over 140× the performance 

of a Raspberry Pi [18] . This substantial computer 

capability enables real-time deep learning inference 

on high-resolution video. The ground station is 

equipped with a Wi-Fi transceiver to communicate 

with the UAV’s Wi-Fi (on the Pi 3) – both are 

linked on a dedicated wireless network. For our 

implementation, a 5 GHz Wi-Fi link was used to 

reduce latency and interference. The Jetson Orin 

also provides HDMI output for a user interface and 

logging capabilities, though operator control is not 

the focus of this work. In summary, the hardware 

configuration ensures the UAV is as light and 

simple as possible, while the ground station 

provides a GPU-accelerated computing backbone 

for running advanced vision algorithms. 

 

3.3 Software Architecture 

 

All system software is built on ROS 2 (Foxy 

Fitzroy) to facilitate modular development and 

distributed communication. The UAV’s Raspberry 

Pi runs a lightweight Linux OS with ROS 2 core 

nodes responsible for sensor data acquisition and 

transmission. One ROS 2 node polls the flight 

sensors (either directly or via the flight controller) 

and publishes the telemetry data (e.g. attitude, 

altitude, GPS) at a fixed rate (e.g. 10 Hz) on a topic. 

Another software component handles the camera: 

instead of publishing raw images over ROS (which 

would consume significant bandwidth), a 

GStreamer-based process captures frames from the 

Pi Camera and encodes them for streaming (see 

Section 3.5). The Pi therefore acts primarily as a 

data source and streaming client in software. On the 

Jetson Orin side, ROS 2 is used to orchestrate data 

intake and processing. A video receiver node (or 

process) accepts the incoming video stream, 

decodes it, and makes the frames available to 

ROS 2 (by publishing to a camera topic, as 

described later). In parallel, a telemetry subscriber 

node listens to the UAV’s telemetry topic and 

buffers or logs the incoming state data. The 

https://www.mdpi.com/1424-8220/21/4/1369#:~:text=Robot%20Operating%20System%20,synchronization%20and%20program%20part%20accuracy
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/#:~:text=Jetson%20AGX%20Orin%20modules%20deliver,64GB%2C%2032GB%2C%20and%20Industrial%20versions
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YOLOv8 inference is encapsulated in a dedicated 

ROS 2 node (running a Python script using the 

Ultralytics YOLOv8 library) that subscribes to the 

camera frames topic and performs object detection 

on each frame in real-time. This node then 

publishes the detection results (e.g. bounding boxes 

and class labels) to another topic for potential use 

by other system components (such as a user 

interface or a future autonomous feedback module). 

The software is thus organized into loosely coupled 

ROS 2 nodes: (1) sensor publisher (UAV), (2) 

video streamer (UAV), (3) telemetry subscriber 

(ground), (4) video decoder/frame publisher 

(ground), and (5) YOLOv8 detector (ground). This 

architecture maximizes parallelism and reliability – 

if any component fails or lags, it does not directly 

crash the others, thanks to ROS 2’s decoupled 

design. Standard ROS 2 message types are used for 

interoperability (e.g. sensor_msgs/Imu for IMU, 

sensor_msgs/Image for camera frames, and custom 

messages for detections). All nodes are launched at 

startup on their respective devices, and the ROS 2 

DDS discovery automatically connects the UAV 

and ground station into a single ROS domain. 

 

3.4 ROS 2 Communication Framework 

 

ROS 2 uses a Data Distribution Service (DDS)-

based publish/subscribe model to handle 

communication between distributed nodes. This is 

well-suited for a UAV-ground station system, as 

ROS 2’s peer-to-peer discovery allows the 

Raspberry Pi and Jetson Orin to exchange messages 

directly over the wireless network without any 

centralized broker [20]. When the UAV and ground 

station boot up, their ROS 2 participants discover 

each other on the LAN and negotiate topic 

subscriptions. The ROS 2 topics implemented in 

our system include /telemetry (for UAV state 

messages) and /camera/image_raw (for video 

frames). Figure 3 illustrates the ROS 2 

communication graph of the system, showing the 

nodes on each side and the data topics between 

them. 

 
Figure 3. ROS 2 node graph of the UAV-ground system 

 

Figure 3: ROS 2 node graph of the UAV-ground 

system. The UAV’s onboard nodes publish 

telemetry and video topics, which the ground 

station nodes subscribe to. The YOLOv8 node on 

the ground subscribes to the camera topic to 

perform object detection. The UAV’s Telemetry 

Publisher node publishes a structured message 

(containing IMU readings, GPS, etc.) to the 

/telemetry topic at regular intervals. On the ground 

station, a Telemetry Subscriber node receives these 

messages via ROS 2 and can log them or feed them 

to a control interface. This telemetry link uses 

ROS 2’s default reliable QoS, ensuring that 

important state information (e.g. battery status or 

pose) is delivered reliably over DDS. 

For the camera stream, a slightly different approach 

is taken to maintain efficiency. Rather than sending 

raw images over a ROS 2 topic (which would be 

bandwidth-intensive), the UAV runs a GStreamer 

pipeline to stream compressed video (detailed in 

Section 3.5). On the ground station, a Camera 

Frame Publisher node (within the video receiver 

process) publishes decoded frames to the ROS 2 

/camera/image_raw topic, making them available to 

other ROS 2 nodes. The YOLOv8 detection node 

subscribes to this image topic. This image is 

configured with a best-effort QoS, since a dropped 

frame is preferable to a delayed frame in a 

streaming context. The ROS 2 framework thus 

cleanly integrates the two data channels: telemetry 

(small, high-priority messages) and video (large, 

high-bandwidth stream). Notably, ROS 2’s 

underlying transport is DDS over UDP – ideal for 

real-time distributed systems – which automatically 

handles packet transport and discovery on the Wi-

Fi network. The UAV and ground station were set 

to share the same ROS 2 domain ID, enabling 

seamless topic exchange once connected to the 

same IP subnet. The wireless link provides 

sufficient throughput for both telemetry (which is 

only a few KB/s) and the compressed video stream. 

In testing, no significant interference was observed 

between the ROS 2 traffic and the video stream. 

This dual-channel communication scheme allows 

the ground station to have an up-to-date picture of 

the UAV’s status while simultaneously receiving 

the live video feed for processing. 

 

3.5 GStreamer Video Pipeline 

 

To achieve real-time video transmission with 

minimal latency,  GStreamer pipelines are 

employed on both the UAV and ground station. 

GStreamer is a high-performance multimedia 

framework that allows us to build a custom video 

streaming pipeline leveraging hardware 

acceleration. Figure 4 depicts the end-to-end video 
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pipeline used in our system, from the onboard 

camera to the ground station video sink. On the 

UAV (Raspberry Pi), a pipeline captures video 

frames from the Pi Camera and encodes them using 

the Pi’s hardware H.264 encoder. The camera feed 

(640×640 @ 30 fps in our setup) is passed through 

the H.264 encoder element in real-time. The 

encoded byte stream is then packetized into RTP 

(Real-Time Protocol) packets and handed to a UDP 

sink element, which streams the packets over Wi-Fi 

to the ground station’s IP. The H.264 encoding is 

selected for its balance of quality, compression, and 

low encoding delay; the Pi 3’s Video Core IV GPU 

can encode 720p video at 30 fps without 

overloading the CPU. On the Jetson Orin side, a 

complementary GStreamer pipeline receives the 

UDP stream on the specified port, depacketizes the 

RTP stream, and uses Jetson’s hardware-

accelerated decoder to decode the H.264 video back 

into raw frames. These frames are then available for 

consumption by the YOLOv8 node (or for display). 

The entire pipeline is optimized for low latency: 

using UDP (connectionless transport) avoids the 

overhead of TCP handshakes, and RTP provides a 

lightweight framing that maintains frame 

boundaries. The end-to-end latencies on the order 

of ~100 ms are achieved over a distance of a few 

meters, which is sufficient for real-time analysis. 

 

 
Figure 4. GStreamer video streaming pipeline  

 

Figure 4: GStreamer video streaming pipeline. The 

UAV’s camera feed is encoded (H.264) and 

streamed via UDP to the ground station, which 

decodes it back to raw video frames. This pipeline 

leverages hardware encoding/decoding on both the 

Pi and Jetson for real-time performance. On the 

Raspberry Pi, the GStreamer v4l2src element is 

used to interface with the camera, feeding into the 

omxh264enc hardware encoder (OpenMAX H.264 

encoder). The encoded bitstream is then fed to 

rtph264pay to packetize it into RTP, and finally 

sent out via udpsink to the ground station’s IP 

address (on port 5600). On the Jetson Orin, the 

pipeline uses udpsrc (listening on port 5600) 

connected to rtph264depay to reassemble the H.264 

stream, which is then sent to the Jetson’s NVDEC 

hardware through h264parse and the nvv4l2decoder 

element. The output is a raw video stream (e.g. a 

sequence of raw frames in memory) that can be fed 

into our ROS 2 image publisher. This design is very 

similar to standard drone streaming setups; for 

instance, Nvidia TX2-based drones have used 

almost identical GStreamer pipelines for 1080p 

video transmission [19]. By using hardware 

acceleration end-to-end and an efficient binary 

protocol, the bandwidth and CPU usage are 

drastically reduced compared to naively sending 

uncompressed images. The H.264 stream at 

720p/30fps typically consumes only ~5–6 Mbps, 

which is easily handled by modern Wi-Fi [21]. In 

contrast, raw images would be on the order of 

200 Mbps (1280×720×3 bytes ×30 fps), which is 

infeasible over wireless. Thus, the chosen pipeline 

ensures a smooth, real-time video feed with 

minimal impact on the UAV’s resources. 

 

 
Figure 5. Network details for video and telemetry 

 

Figure 5: Network communication details for video 

and telemetry. The UAV (192.168.10.2) streams 

video via UDP to the ground station (192.168.10.1) 

on port 5600. ROS 2 DDS traffic (telemetry topics) 

also traverses the same network on UDP ports 

managed by DDS. Both the telemetry and video 

streams share the same wireless network link. The 

static IP addresses for the UAV and ground station 

are configured  for simplicity (as shown in 

Figure 5). The GStreamer pipeline is set to use 

UDP port 5600 for video; this port was chosen 

arbitrarily within the dynamic range, and both sides 

are configured accordingly. The telemetry topic 

data uses ROS 2’s DDS protocol, which under the 

hood utilizes a range of UDP ports (starting around 

port 7400 for discovery by default) for data 

exchange – these are handled automatically by the 

DDS middleware. As such, no manual port 

configuration is needed for ROS 2 traffic aside 

from ensuring the network allows 

multicast/broadcast for discovery. The important 

aspect is that the video UDP port (5600) does not 

conflict with any DDS ports. In practice, DDS uses 

different port numbers, so the two channels coexist 

without interference. The Wi-Fi link (802.11ac in 

5 GHz band) provides ample bandwidth 

(>100 Mbps) and can handle the ~6 Mbps video 

stream alongside negligible telemetry bandwidth. A 

packet loss in the video is not observed under 
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strong signal conditions; however, minor loss 

would only result in a momentary frame skip due to 

the nature of UDP/RTP (which is acceptable in our 

application). In summary, the networking setup 

successfully delivers a high-quality video feed and 

timely telemetry updates in parallel, enabling the 

ground station to have full situational awareness of 

the UAV. 

 

3.6 YOLOv8 Real-Time Integration 

 

The integration of YOLOv8 into the real-time data 

pipeline represents a critical enhancement to the 

ground station’s analytic capabilities. YOLOv8, the 

latest evolution in the YOLO family of single-shot 

object detectors, is recognised for its superior 

accuracy and computational efficiency, making it 

an ideal candidate for real-time applications. As 

detailed in [25], YOLOv8’s optimized 

performance, when coupled with TensorRT 

accelerations, provides a significant reduction in 

inference latency without compromising accuracy. 

This makes it particularly well-suited for resource-

constrained environments where timely processing 

is paramount. 

 

 
Figure 6.  Integration of telemetry and camera via ROS 

2 topics 

 
Figure 6 illustrates the architecture of the integrated 

UAV-ground station system. The UAV platform 

(based on a Raspberry Pi 3) transmits telemetry 

data via ROS 2’s DDS-based publish-subscribe 

system and streams video data via GStreamer to the 

Jetson Orin ground station. On the ground station, 

the YOLOv8 detector receives video frames, 

performing inference using GPU acceleration 

provided by the Jetson Orin. 

In our implementation, YOLOv8 operates as a 

dedicated ROS 2 processing node subscribing to the 

incoming video frames, leveraging the 

computational power of the Jetson Orin’s GPU and 

Tensor Cores. This configuration ensures that 

object detection processing aligns with the 

incoming video stream rate (approximately 30 

frames per second), demonstrating the model’s 

ability to deliver highly accurate detections with 

minimal latency. These real-time capabilities, as 

previously validated [25], highlight the advantages 

of integrating advanced model optimization 

techniques into existing system frameworks. 

By publishing detection results on the /detections 

ROS 2 topic, the system maintains modularity and 

scalability, enabling downstream nodes to easily 

integrate further analyses such as target tracking or 

autonomous decision-making. This methodological 

approach corroborates prior findings [25], 

advocating for the combination of modern AI 

techniques and distributed architectures to achieve 

superior situational awareness and responsive UAV 

operations. 

. 

4. Results 
 

This section rigorously evaluates the performance 

of the proposed UAV communication and real-time 

analytics system, emphasizing video streaming 

latency, YOLOv8 inference speed, telemetry 

reliability, and their synchronized integration 

through ROS 2. Experiments were performed under 

controlled indoor and semi-outdoor line-of-sight 

conditions using a 5 GHz Wi-Fi network, ensuring 

stable connectivity. Metrics data was systematically 

collected using a dedicated ROS 2 node 

(gs_video_yolo_node), which records and 

synchronizes real-time video streaming parameters, 

inference times, and telemetry information into 

structured CSV logs for precise and comprehensive 

analysis. 

 

4.1 Video Streaming Performance 

 

Figure 7 illustrates comprehensive metrics of the 

video streaming performance, including frames per 

second (FPS), latency, and inference times. The 

UAV transmitted H.264-encoded video at a 

resolution of 640p and 30 FPS. Measured end-to-

end latency, from the Raspberry Pi camera frame 

capture to the Jetson Orin display, ranged between 

90–120 ms, with an average latency of 

approximately 105 ms. These latency figures 

confirm the system's capability to support near real-

time operations, consistent with previous 

benchmarks reported in the literature [19], [21]. 

Packet loss under typical network conditions was 

negligible (less than 0.5%), ensuring minimal 

disruptions to the video stream. 

 

 
Figure 7. Comprehensive metrics of video streaming 
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4.2 YOLOv8 Inference Performance 

 

The YOLOv8-nano model was deployed on the 

Jetson Orin Nano and evaluated using real-time 

frames received via ROS 2. The model's 

performance, presented in Figure 8, consistently 

achieved inference speeds of 28–30 FPS, closely 

aligning with the incoming stream rate. The 

YOLOv8-nano model achieved a mean Average 

Precision (mAP@0.5) of 81.2% across a test set of 

2741 annotated frames, face-seg [25]. 

demonstrating high accuracy suitable for practical 

deployment. The detection capability for faces at 

distances between 2 to 5 meters confirms the 

model’s practical effectiveness for real-time facial 

analytics.(Figure 8) FPS, latency, and inference 

time over the evaluation period. 

 

 
Figure 8. FPS, latency, and inference time over the 

evaluation  

 

4.3 Telemetry and ROS 2 Topic Synchronization 

 

The telemetry performance from the Radiolink 

Crossflight Flight Controller is shown in Figures 9 

and 10. Data published at 10 Hz through ROS 2 

was reliably received at the ground station without 

measurable delay or loss. The ROS 2 DDS-based 

communication framework effectively 

synchronized telemetry data with video frames, 

validated by timestamp correlation. Communication 

remained robust at indoor distances up to 8 meters 

and outdoor distances of 15 meters, with minimal 

CPU overhead, demonstrating ROS 2’s efficiency 

and reliability. 

 

4.5 Comparative and Comprehensive 

Performance 

 

To evaluate the effectiveness of our proposed 

architecture in real-world deployment scenarios, a 

performance benchmark was conducted using two 

different ground station configurations: (1) an MSI 

laptop and (2) an NVIDIA Jetson Orin Nano. Both 

systems received video and telemetry data from a  

 

 
Figure 9. Ground station telemetry reception status via 

ROS 2 

 
UAV over Wi-Fi and executed the YOLOv8-Seg 

model in real time.As shown in Figure 10, the 

Jetson Orin Nano consistently outperformed the 

MSI laptop in terms of average FPS (28.7 vs. 24.0), 

lower latency (98.3 ms vs. 120.4 ms), and faster 

inference times (80.1 ms vs. 87.6 ms). These results 

highlight the Jetson's efficiency in handling edge AI 

tasks despite its lower power footprint. However, 

the Jetson did exhibit a slightly higher packet loss 

rate (2.6%) compared to the MSI’s more stable 

0.5%, which may be attributed to hardware-level 

networking differences. 

Both systems maintained a steady telemetry rate of 

10 messages per second, confirming 

communication reliability. The Jetson Orin Nano 

demonstrates superior real-time performance, 

making it a compelling choice for embedded AI-

driven UAV applications. 

Figure 11 compares the YOLOv8-Seg integrated 

pipeline to a video-only baseline, demonstrating the 

trade-offs introduced by real-time inference. While 

the video-only pipeline achieved a slightly higher 

FPS (28.7 vs. 24) and reduced latency (98.3 ms vs. 

120.4 ms), it lacked semantic analysis capabilities. 

Packet loss in the video-only system was also 

notably higher (2.6%) compared to the YOLOv8-

Seg pipeline’s stabilised 0.5%. 

 

 
Figure 10. performance chart between the Jetson Orin 

Nano and the MSI Laptop as ground stations 
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Figure 11. Comparison between the YOLOv8-seg 

integrated and the video-only streaming pipeline 

 

These results validate the system’s robustness for 

embedded AI tasks and confirm the Jetson Orin 

Nano as a viable, power-efficient ground station 

platform for UAV-based facial segmentation in 

edge environments. 

To evaluate temporal stability, a jitter analysis was 

conducted by measuring frame rate variation across 

100 consecutive frames. The YOLOv8-

Segmentation system exhibited a remarkably 

consistent performance, with a mean frame rate of 

30.0 FPS, a standard deviation of just 0.30, and an 

interquartile range (IQR) of 0.41 FPS. The 

coefficient of variation (CV), calculated as σ/μ, was 

0.0100, indicating near-constant frame timing and 

minimal jitter throughout the stream. 

 

In comparison, the video-only pipeline, while 

achieving a higher mean FPS of 35.7, presented a 

significantly higher jitter, with a standard deviation 

of 1.17, IQR of 1.65 FPS, and a CV of 0.0328. 

These metrics demonstrate that while both systems 

are real-time capable, the YOLOv8-enhanced 

pipeline provides superior temporal consistency, 

making it more suitable for time-sensitive 

applications such as facial recognition, UAV 

navigation, and visual serving. Table 1 shows the 

Mathematical Jitter Metrics 

 
Table 1. show Mathematical Jitter Metrics 
Metric YOLOv8-Seg Video-Only 

Mean FPS 30.01 35.75 

Std Dev (σ) 0.3 1.27 

Interquartile Range (IQR) 0.47 1.84 

Coefficient of Variation 

(CV = σ / μ) 

0.0099 0.0355 

 

This analysis confirms that the integration of deep 

learning segmentation does not compromise real-

time performance and, in fact, enhances system 

stability by offering consistent frame timing across 

inference workloads. 

 

4.4 Summary of Findings 

 

 The streaming system maintained 30 FPS and 

sub-120 ms latency under standard conditions. 

 YOLOv8-nano ran at real-time speed (28–30 

FPS) with 81.2% detection accuracy. 

 ROS 2 DDS-based telemetry and video 

integration enabled synchronized, low-latency 

data exchange. 

These results support the effectiveness of a ROS 2-

based UAV communication and analytics system 

for lightweight drones. The combination of 

GStreamer, YOLOv8, and ROS 2 provides a robust 

and extensible framework suitable for surveillance, 

inspection, and research applications. 

 

5. Conclusion 

 
This paper presented the design and evaluation of a 

real-time UAV video streaming and control system 

leveraging ROS 2, GStreamer, and YOLOv8-seg. 

The system was architected to offload 

computationally demanding tasks to a Jetson Orin-

based ground station while maintaining lightweight 

onboard processing on a Raspberry Pi 3 companion 

computer. Using ROS 2's Data Distribution Service 

(DDS) communication framework, a seamless data 

exchange is achieved between onboard and ground-

side components, enabling synchronized telemetry 

and live video streaming. 

The GStreamer-based video pipeline demonstrated 

reliable transmission of 640p H.264 video at 30 

FPS with average end-to-end latency of ~105 ms, 

even under modest wireless network conditions. 

The YOLOv8-seg model, deployed on the Jetson 

Orin, provided real-time object detection 

capabilities, achieving 28–30 FPS and a mAP of 

81.2% on test frames. These results underscore the 

viability of the proposed architecture for real-time, 

intelligent UAV-based monitoring and surveillance. 

The modular design facilitated by ROS 2 allows for 

future extensibility, including bidirectional control 

commands, multi-camera support, and edge-based 

decision-making. Moreover, the use of open-source 

tools and affordable hardware components 

highlights the system's accessibility and 

adaptability for academic, research, and low-cost 

industrial applications. 

The future work, is to integrate autonomous flight 

logic based on detection results, investigate long-

range communication channels (e.g., 4G/5G), and 

enhance detection accuracy through model fine-

tuning and multi-modal sensing. 

The results of this study provide a foundation for 

further advancements in cloud-augmented robotics 

and intelligent UAV systems, promoting the 
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adoption of modular, AI-integrated, and 

communication-aware aerial platforms across a 

wide range of applications. 
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