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Abstract:  
 

The swift advancement of the Internet of Things (IoT) has significantly transformed 

contemporary communication frameworks by facilitating effortless data transmission 

among a diverse network of interconnected smart devices. Nevertheless, the increased 

connectivity and resource-constrained nature of IoT nodes have made them prime targets 

for cyber-attacks, necessitating the development of intelligent and privacy-aware 

Intrusion Detection Systems (IDS). Traditional IDS approaches often fall short in 

addressing the dual challenges of real-time threat detection and preserving user data 

confidentiality. This research represents a Privacy-Preserving Model for Efficient 

Designing of IDS in IoT Environments by integrating a deep learning-driven detection 

framework with advanced optimization techniques. The core detection engine is built 

upon a Gated Recurrent Unit (GRU) network, chosen for its lightweight structure and 

strong temporal pattern recognition capabilities. To enhance model performance, 

hyperparameters are tuned using the novel Ladybug Beetle Optimization (LBO) 

algorithm, which mimics the intelligent foraging behaviour of ladybugs to achieve global 

optima efficiently. To ensure data privacy and reduce communication overhead, the 

model is integrated with federated learning, allowing distributed training across IoT 

devices without centralized data aggregation. Additionally, lightweight encryption 

techniques are employed to secure data transmission during training and inference 

phases. The proposed system was evaluated using standard benchmark datasets, 

achieving a detection accuracy of 98.9%, and the results demonstrate significant 

improvements in recall, precision and computational efficiency when examined to 

traditional approaches. This work contributes a scalable, intelligent, and privacy-

respecting intrusion detection architecture suitable for real-world IoT scenarios, 

comprising smart homes, healthcare systems, and industrial automation. 

 

 

1. Introduction 
 

The IoT represents a rapidly growing ecosystem of 

interconnected devices, sensors, actuators, and 

gateways that communicate and swap data over the 

internet. With applications ranging from smart cities, 

industrial automation, smart healthcare, and 

agriculture to energy systems, IoT has transformed 

traditional systems into intelligent, real-time, data-

driven environments [1-4]. These systems are 

designed to be autonomous and responsive, enabling 

seamless user experiences and efficient resource 

utilization. However, the increasing scale and 

complexity of IoT networks also bring substantial 

risks, particularly in terms of cybersecurity and data 

privacy. 

IoT devices are typically deployed in large numbers 

and are often resource-constrained in terms of 

processing power, memory, and battery life [5-8]. 

Their widespread deployment in critical 

infrastructures and their exposure to the public 

internet make them attractive targets for malicious 

actors. Common attacks on IoT networks include 
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Distributed Denial-of-Service (DDoS) attacks, 

spoofing, data injection, eavesdropping, and 

malware infections. Given the continuous flow of 

real-time data and the often-unprotected nature of 

IoT endpoints, it becomes imperative to have robust 

security mechanisms in place to detect and mitigate 

such intrusions promptly. Among the various 

security measures, IDS holds a prominent place in 

identifying malicious activities and assuring the 

integrity, confidentiality, and availability of IoT 

services [9]. IDS solutions can be broadly classified 

into signature-relied and anomaly-relied systems. 

Signature-relied IDS rely on known threat patterns 

and are effective in recognizing previously identified 

threats. However, they fail to recognize zero-day 

attacks or unknown intrusion patterns. Alternatively, 

anomaly-relied IDS detect deviations from normal 

behavior using statistical or machine learning 

models, making them suitable for dynamic and 

heterogeneous IoT environments. Hybrid models, 

which combine both approaches, attempt to balance 

accuracy and adaptability [10-11]. 

Contemporary progress in machine learning (ML) 

and deep learning (DL) techniques has greatly 

enhanced the effectiveness of intrusion detection 

systems (IDS) by empowering them to identify 

intricate patterns and adapt to emerging 

cybersecurity threats. Models such as Support 

Vector Machines (SVM), k-Nearest Neighbours (k-

NN), Decision Trees, and Random Forests have been 

applied in various IDS frameworks. DL models like 

CNN, LSTM, GRU, and autoencoders have further 

enhanced detection capabilities by learning temporal 

and spatial patterns from large datasets. Despite their 

effectiveness, these methods are often constrained 

by several limitations when deployed in IoT settings. 

First, many of these models depend on centralized 

training, which involves collecting data from all 

devices to a central server. This not only introduces 

high communication overhead and latency but also 

poses serious privacy risks, especially when 

sensitive user data is involved. Second, deep 

learning models are computationally demanding and 

require careful tuning of hyperparameters to achieve 

optimal performance. Manual tuning is inefficient, 

while existing optimization algorithms may suffer 

from premature convergence or excessive 

computation time. Third, most existing IDS 

frameworks are not designed with resource-

constrained devices in mind, leading to scalability 

issues and limited real-world applicability in IoT 

ecosystems. To surpass these limitations, this paper 

recommends a novel Privacy-Preserving Intrusion 

Detection Model tailored for IoT environments. The 

model is built upon an optimized Gated Recurrent 

Unit (GRU) network for detecting sequential 

patterns of network behaviour. GRU, being a 

lightweight variant of LSTM, is well-suited for low-

power devices and offers effective temporal learning 

capabilities. To optimize the GRU model’s 

performance, we incorporate the Ladybug Beetle 

Optimization (LBO) algorithm, which mimics the 

intelligent movement and prey-searching behavior 

of ladybugs to fine-tune hyperparameters such as 

learning rate, hidden units, and dropout rates. 

Moreover, to ensure data privacy and eliminate the 

need for centralized data collection, the model 

adopts a federated learning approach facilitates joint 

model learning among numerous IoT devices while 

ensuring that original data remains undisclosed. This 

decentralization significantly reduces privacy risks 

and minimizes communication overhead. 

Lightweight encryption methods are also embedded 

to secure data transmission and ensure end-to-end 

protection throughout the learning and detection 

processes. 

1.1 Contribution of the Research 
 

 Design and implementation of a lightweight, 

deep learning-based IDS using GRU 

optimized with the Ladybug Beetle 

Optimization algorithm. 

 Integration of federated learning to preserve 

data privacy and minimize communication 

overhead in distributed IoT environments. 

 Deployment of lightweight encryption 

techniques suitable for resource-constrained 

IoT devices. 

 Extensive evaluation on benchmark IoT 

datasets demonstrating improved accuracy, 

reduced false positives, and lower 

computation costs examined to state-of-the-

art approaches. 

1.2 Structure of the Paper 

 

Section 2 reviews the related work and recent 

advancements in IoT-based IDS models. Section 3 

details the proposed methodology, including the 

GRU architecture, LBO optimization, and federated 

learning framework. Section 4 presents the 

experimental setup, datasets, performance metrics, 

comparative analysis with existing approaches. At 

last, Section 6 wraps the paper and outlines future 

research endeavours. 

2. Related Work 
 

Almotairi et al. (2024) [12] introduced a ML-relied 

ensemble model with feature selection for enhancing 

IDS in IoT networks. Their approach utilized the K-

Best algorithm to extract the top 15 critical features 
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and constructed a stacked ensemble classifier 

incorporating multiple traditional machine learning 

models. The approach was examined on the ‘Ton 

IoT dataset’ and demonstrated significant 

improvements in precision, accuracy, F1-score and 

recall examined to individual models. The study 

effectively leveraged ensemble learning to boost 

classification performance and robustness. 

Nonetheless, the approach’s reliance on pre-selected 

features and traditional ML techniques may limit 

adaptability to evolving IoT threat patterns. 

Qaddos et al. (2024) [13] proposed a novel IDS 

framework that hybridizes CNN with GRU to 

enhance IoT security. Their model effectively 

captures complex spatial and sequential patterns, 

making it well-suited for IDS in IoT environments. 

They also incorporated the feature-weighted 

synthetic minority oversampling technique (FW-

SMOTE) to address class imbalance in training data. 

However, the model's reliance on labeled data and 

high computational requirements may limit real-

time deployment in resource-constrained IoT 

devices. 

Thabit et al. (2024) [14] proposed an enhanced IDS 

for IoT networks by applying advanced ML 

techniques using the AWID dataset, which aligns 

with current IEEE 802.11 standards. The study 

evaluated various classification algorithms with 

WEKA, focusing on false positive rate, accuracy and 

detection rate. A robust ML framework was 

introduced, incorporating feature selection methods 

for performance optimization. The results showed 

that logistic regression achieved up to 98.90% 

accuracy in the early evaluation phases, and boosted 

decision trees performed well with overlapping 

features. However, the study's limitation lies in its 

dependency on a single dataset (AWID), which may 

not generalize across all IoT network environments. 

Rabie et al. (2024) [15] introduced a novel IoT IDS 

framework that combines the Decisive Red Fox 

optimization algorithm with a descriptive 

backpropagated radial basis function (RBF) model. 

Their approach aims to enhance IDS in smart 

environments by addressing the unique security 

challenges of IoT networks, like limited computing 

capabilities and specialized communication 

protocols. The study leverages a comprehensive 

overview of residing IDS mechanisms tailored for 

the IoT architecture, emphasizing detection 

efficiency and reliability. Experimental results 

demonstrated improved accuracy in identifying 

malicious activities while maintaining 

computational feasibility for resource-constrained 

devices. However, the model's limitation lies in its 

dependency on proper feature selection and its 

adaptability across diverse and evolving IoT 

infrastructures. 

Lee et al. (2023) [16] presented a comprehensive 

review of IDS tailored for IoT environments, 

categorizing them based on detection methods, 

architecture types, and the nature of threat 

prevention. Their study focused on distinguishing 

between host-based and network-based IDS, and 

evaluated centralized, decentralized, and distributed 

architectures. They also compared signature-based, 

anomaly-based, and hybrid detection mechanisms, 

highlighting how these techniques address specific 

IoT challenges such as routing attacks in 

6LoWPAN. The proposed categorization supports 

understanding the trade-offs in IDS design choices 

for securing IoT systems. However, the study 

acknowledged a limitation in handling evolving and 

complex threats due to the static nature of many IDS 

models. 

Fatani et al. (2023) [17] proposed an enhanced IDS 

by integrating DL with a modified Growth 

Optimizer (MGO) algorithm. Their model utilized 

CNNs for feature extraction and employed a hybrid 

optimization method combining MGO and the 

Whale Optimization Algorithm (WOA) for feature 

selection. This approach was evaluated on public 

cloud and IoT datasets, demonstrating superior 

performance in detecting both known and unknown 

cyber-attacks. The results showed high accuracy 

rates and outperformed several existing methods in 

experimental comparisons. However, the study 

acknowledged limitations regarding the 

computational complexity and scalability of the 

hybrid optimization process in real-time 

applications. 

Fraihat et al. (2023) [18] proposed a Network NIDS 

for large-scale IoT NetFlow-based networks using 

ML enhanced by a modified Arithmetic 

Optimization Algorithm (AOA) for feature 

selection. The study minimised 43 NetFlow features 

to 7, significantly improving prediction time and 

system performance. Random Forest and Extra 

Trees classifiers were trained on four recent IoT 

traffic datasets, achieving 99% accuracy for binary 

classification and 98% for multi-class classification. 

The proposed system showed robust generalizability 

across different intrusion detection datasets. 

However, the limitation lies in its dependence on 

pre-labeled datasets and the challenge of 

maintaining high accuracy with emerging unseen 

attacks in real-time IoT scenarios. 

Elnakib et al. (2023) [19] introduced EIDM, a DL-

relied anomaly detection model tailored for IoT IDS. 
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The model is capable of classifying 15 distinct traffic 

behaviors, including 14 types of attacks, using the 

CICIDS2017 dataset. It achieved a classification 

accuracy of 95%, outperforming several state-of-

the-art DL - IDS approaches. The study also 

involved customizing four DL models for multi-

class classification and benchmarking them against 

EIDM for accuracy and efficiency. Although the 

model demonstrated high detection rates, it faces 

limitations in handling real-time IoT traffic and 

scalability in dynamic network environments. 

Alosaimi et al. (2023) [20] introduced an IDS system 

leveraging DL and a three-level algorithmic 

framework to enhance IoT security. Their method 

was validated using the BoT-IoT dataset, 

demonstrating superior detection performance 

compared to traditional approaches. The system 

effectively identified a range of cyber-attacks, 

contributing to improved automation and secure 

interconnectivity in IoT environments. The study 

highlighted the model’s adaptability for broader IoT 

applications, positioning it as a scalable solution for 

securing smart devices. However, a key limitation 

noted was the model’s dependency on dataset 

quality, which may affect its generalization across 

diverse real-world IoT scenarios. 

Gyamfi et al. (2022) [21] conducted a 

comprehensive review of IDS in IoT environments, 

focusing on the integration of Multi-access Edge 

Computing (MEC) and ML techniques. They 

highlighted the limitations of IoT devices due to low 

memory, CPU power, and energy, making them 

highly vulnerable to cyber-attacks. The study 

emphasized the role of MEC in offloading complex 

computations from IoT devices to the edge, 

enhancing security and system responsiveness. Their 

proposed framework incorporated MEC-based 

distributed solutions and provided a comparative 

analysis of public datasets, evaluation metrics, and 

deployment strategies used in IDS. However, the 

major limitation noted was the lack of real-world 

MEC-based IDS implementations and the 

challenges of generalizing models across diverse IoT 

environments. Table 1 provides a summary of the 

related works. 

 

 

Table 1. Summary for the Related Works 

S.No Author 

Name 

Year Title Methodology Advantage Disadvantage 

1 Almotairi 
et al. 

[12] 

2024 Enhancing intrusion 

detection in IoT 

networks using ML-

based feature selection 

and ensemble models 

K-Best feature 

selection with 

stacked ensemble 
ML classifiers 

Improved accuracy, 

precision, recall, and 
F1-score 

Limited adaptability 

due to reliance on pre-
selected features 

2 Qaddos et 
al. 

[13] 

2024 A novel intrusion 

detection framework for 
optimizing IoT security 

Hybrid CNN-GRU 

model with FW-
SMOTE 

Achieved 99.60% and 

99.16% accuracy on 
two datasets 

High computational 

cost limits real-time 
deployment 

3 Thabit et 
al. 

[14] 

2024 Enhanced IDS for IoT 

networks using ML with 
the AWID dataset 

ML classification 

with feature 

selection and 

WEKA evaluation 

High accuracy (up to 

98.90%) and low false 
positives 

Limited 

generalizability due to 
use of a single dataset 

4 Rabie et 
al. 

[15] 

2024 IoT IDS using Red Fox 

Optimization and RBF 
model 

Decisive Red Fox 

optimization + RBF 
neural network 

Good accuracy and 

suited for resource-

constrained 

environments 

Requires careful 

feature selection and 
lacks adaptability 

5 Lee et al. 

[16] 

2023 Intrusion Detection 
Systems for IoT 

Review of IDS 

types and 
architectures 

Comprehensive 

categorization aids 
IDS design 

Static models cannot 

handle evolving 
threats 

6 Fatani et 
al. 

[17] 

2023 Enhancing IDS for IoT 

and Cloud using MGO 

and CNNs 

CNN for feature 

extraction + MGO-

WOA for feature 
selection 

High accuracy in 

detecting known and 

unknown attacks 

High computational 

complexity affects 

real-time use 

7 Fraihat et 
al. 

[18] 

2023 IDS for IoT NetFlow 

networks using ML with 
AOA 

ML with modified 

Arithmetic 

Optimization 

Algorithm 

Reduced features to 7, 

improving speed and 
accuracy 

Depends on labeled 

datasets and struggles 
with new attacks 
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8 Elnakib et 
al. 

[19] 

2023 EIDM: Deep learning 
model for IoT IDS 

Deep learning 

model for 

classifying 15 traffic 

behaviors 

Outperformed state-

of-the-art models in 
detection rate 

Scalability and real-

time processing are 
limited 

9 Alosaimi 
et al. 

[20] 

2023 An Intrusion Detection 
System Using BoT-IoT 

Deep learning with 

a 3-level algorithmic 
framework 

High detection 

performance and 
adaptable model 

Generalization 

depends heavily on 
dataset quality 

10 Gyamfi et 
al. 

[21] 

2022 IDS in IoT: A Review 
leveraging MEC and ML 

MEC-based 

distributed IDS 
framework 

Offloads computation 

to edge, enhancing 
performance 

Lack of real-world 

MEC-IDS 
implementations 

3. Proposed Methodology 
 

The proposed Intrusion Detection Framework 

begins with Data Preprocessing, where IoT network 

traffic is cleaned, normalized using MinMax scaling, 

and categorical data is encoded with one-hot 

encoding. Missing values are handled using 

statistical methods such as mean, variance, and 

standard deviation. If the data shows class 

imbalance, it is addressed through data augmentation 

using GANs, generating synthetic samples to 

balance the dataset. A Gated Recurrent Unit (GRU) 

approach is employed to learn temporal patterns in 

the network traffic, crucial for detecting sequential 

attack behaviors. To improve model performance, 

Ladybug Beetle Optimization (LBO) is used for 

hyperparameter tuning, ensuring higher accuracy 

and faster convergence. The final model is deployed 

using a Federated Learning architecture, enabling 

decentralized training across multiple IoT nodes 

without sharing raw data, thus preserving privacy 

while ensuring robust and efficient intrusion 

detection. Figure 1 depicts the entire framework for 

the recommended algorithm. 

 

Figure 1.  Entire Framework for the recommended approach
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Figure 2. Data Distribution in the Datasets utilized for 

training the recommended approach 
 

Figure 2 illustrates the distribution of data across the 

datasets employed for training the proposed method. 

 

Figure 3. Distribution of Attacks in IoT Botnets Datasets 

 

Figure 3 depicts the spread of different attack 

categories present in the IoT botnet datasets. 

The IoT Botnet dataset, comprising a total of 

2,550,611 records, exhibits a significant class 

imbalance as visualized in the attack class 

distribution bar chart. The majority of the data, 

approximately 87%, consists of benign instances, 

accounting for 2,218,761 records. The remaining 

13% is distributed among various attack types, 

including DDoS (128,025 instances, 5%), DoS 

(76,543 instances, 3%), Reconnaissance (50,912 

instances, 2%), Brute Force (38,184 instances, 

1.5%), Web Attack (25,456 instances, 1%), and 

Botnet (12,730 instances, 0.5%). This uneven 

distribution suggests that the dataset is highly 

skewed towards normal traffic, necessitating the 

application of data balancing or augmentation 

techniques to elevate the performance and 

generalization of ML approaches during training and 

evaluation. 

3.1 Materials and Methods 

 

This study utilizes the BoT-IoT dataset, a 

comprehensive and realistic simulation of network 

traffic in IoT environments, developed by the Cyber 

Range Lab at UNSW Canberra. The dataset 

comprises a wide variety of threats scenarios like 

DDoS, DoS, reconnaissance, and information theft, 

along with benign traffic [22-24]. It contains over 72 

million records across multiple features including 

packet metadata, flow statistics, and activity labels. 

For the proposed intrusion detection system, a 

reduced subset of approximately 3 million records is 

selected to ensure computational efficiency while 

preserving the diversity and complexity of the 

original dataset. The dataset includes both numerical 

and categorical features, making it suitable for deep 

learning-based detection models. 

3.2 Data Preprocessing 

 

To prepare the dataset for model training, a robust 

data preprocessing pipeline is implemented. 

Initially, the dataset is inspected for missing values, 

which are addressed using statistical imputation 

methods such as mean, variance, and standard 

deviation, depending on the nature of the attribute. 

Numerical features are scaled using MinMax 

normalization to bring all values into a uniform 

range among 0 and 1, which is crucial for improving 

the convergence speed of the GRU model. 

Categorical variables are encoded using one-hot 

encoding to ensure compatibility with the model’s 

input format [25]. 

3.3 Data Augmentation 

 

Given the noticeable class imbalance, where 

malicious traffic instances far outnumber normal 

ones (or vice versa for certain attack categories), the 

framework employs Generative Adversarial 

Networks (GANs) for data augmentation. GANs are 

utilized to generate synthetic samples for the 

minority classes, helping to balance the dataset 

without introducing duplicate or biased records. This 

improves the approach’s capability to generalize and 

accurately recognize various attack types. The 

augmentation ensures that the deep learning model 



Swetha Madireddy, Kalaivani Kathirvelu / IJCESEN 11-2(2025)3271-3284 

 

3277 

 

receives adequate representation from all classes, 

thereby reducing bias and enhancing overall 

classification performance during training. 

3.4 Gated Recurrent Unit (GRU)  

 

GRU are a variant of the recurrent neural network 

(RNN) framework engineered to address limitations 

of conventional RNNs, including the vanishing 

gradient issue and long-term dependency issues. 

GRUs are simpler than Long Short-Term Memory 

(LSTM) networks, yet they offer similar 

performance in terms of capturing sequential 

dependencies in data. GRUs has gained widespread 

use in tasks involving sequential data, like time 

series forecasting, natural language processing, and, 

as in your case [26-29], architectural layout 

generation. Traditional RNNs are limited by the fact 

that as information is passed through the network's 

recurrent connections over many time steps, it tends 

to diminish, especially when learning from long 

sequences. This is known as the diminishing 

gradient issue, where the gradient values shrink 

significantly and prevent the model from learning 

long-range dependencies effectively. To address 

this, GRUs utilize specialized procedure to gate the 

flow of information, allowing the network to 

selectively "forget" or "remember" important 

information over time. Figure 4 shows the 

architecture of the Gated Recurrent Unit (GRU) 

network. 

 

Figure 4. Gated Recurrent Unit Network 

3.4.1 GRU Structure and Gates 

 

A key feature of GRUs is their use of gates to control 

how information is passed through the network. 

There are two main gates in a GRU: the update gate 

and the reset gate. These gates control the flow of 

information from the previous time step and the 

current input. 

 Update Gate (z): Regulates the proportion 

of data preserved from the prior hidden 

state. It determines whether the unit should 

retain its memory or update it with new 

information. 

 Reset Gate (r): Regulates the extent to 

which past memory is discarded while 

refreshing the hidden state. 

3.4.2 Reset and Update Gates - Mathematical 

Formulation 

 

At time step t, given the input xt and the previous 

hidden state h(t-1), the reset and update gates are 

computed as: 

𝑧𝑡 =  𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)                                   (1) 

Here, Wz is the weight matrix for the update gate, 

and bz is the bias term. The function σ () represents 

the sigmoid activation function, which outputs 

values between 0 and 1, determining the quantity 

previous state should be carried forward. 

𝑟𝑡 =  𝜎(𝑊𝑟  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)                                  (2)   

Similarly, Wr represents the weight matrix for the 

reset gate, while brb_rbr denotes the bias term. The 

reset gate regulates the extent to which past 

information is discarded, effectively adjusting the 

influence of the previous hidden state. 

3.4.3 Candidate Hidden State 

 

After determining the quantity of the past hidden 

state should be forgotten (via the reset gate), the 

approach computes a candidate hidden state (Ŝ_t), 

which represents a new hidden state if the model 

were to completely forget the old one. This candidate 

is then used to upgrade the final hidden state based 

on the update gate. 

ℎ�̃� = tanh (Wh . [𝑟𝑡 . ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ)                    (3)          

Here, Wh is the weight matrix for the candidate 

hidden state, and bh is the bias term. The function 

tanh () is the hyperbolic tangent activation function, 

which outputs values among -1 and 1, ensuring the 

hidden state is appropriately bounded. 

3.4.4 Final Hidden State Update 

 

The ultimate hidden state ht at time step t is derived 

from a weighted fusion of the prior hidden state ht−1 
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and the proposed hidden state Ŝt, with the update 

gate zt regulating the transition. 

ℎ𝑡 = (1 − 𝑧𝑡). ℎ𝑡−1 + 𝑧𝑡  . ℎ�̃�                                  (4)   

This equation (4) assures that the model regains 

memory (through ht-1) or updates it with the new 

candidate hidden state (through Ŝt), depending on the 

value of zt. When zt is close to 1, the network 

primarily keeps the previous hidden state, and when 

zt is close to 0, the candidate hidden state takes over. 

3.5 Ladybug Beetle Optimization algorithm 

 

The overall workflow of most metaheuristic 

optimization techniques tends to follow a 

comparable structure. Initially, the population of 

candidate solutions is randomly generated and 

assessed based on a defined fitness or evaluation 

function. Following this, the solutions are ranked 

according to their performance. The population is 

then iteratively refined and reassessed across several 

cycles. Through this repeated process of 

modification and evaluation, the algorithm 

progressively moves toward discovering an optimal 

or near-optimal solution. Ultimately, the most 

promising solution identified throughout the 

iterations is selected as the final output. This 

procedural framework, as applied to the LBO 

(League-Based Optimization) algorithm, is 

illustrated in Figure 5. 

 

Figure 5. LBO (League-Based Optimization) 

algorithm 

This section presents the mathematical formulation 

of the Ladybug Optimization (LBO) algorithm. The 

LBO technique draws its inspiration from the 

synchronized movement patterns observed in 

ladybugs as they instinctively search for areas with 

the highest temperature. Initially, a starting 

population of N (0) ladybugs is established [30]. As 

the algorithm progresses through its iterative 

procedure, the final number of ladybugs is denoted 

as N(kmax), typically satisfying the condition N  (0) 

≥N(kmax). Upon completion of the iterative process, 

the best value of the objective function is identified 

as the optimal solution. 

The LBO modeling is systematically structured and 

carried out in three primary phases, each 

contributing to the overall optimization strategy by 

mimicking natural foraging behaviors and 

thermotactic responses of ladybugs in their habitat. 

3.5.1 Define the objective function 

 

The objective function is formulated to represent the 

intensity (or "heat") associated with each candidate's 

location within the population. Essentially, this 

function quantifies how "hot" a particular spot is, 

with greater heat levels corresponding to higher 

objective function scores. However, to align the 

problem with conventional optimization 

frameworks—where the goal is typically to 

minimize the objective—the structure of the 

problem is transformed accordingly. Thus, the 

objective function is redefined as the reciprocal of 

the heat at each candidate’s position. Under this 

formulation, a location with a higher heat level 

yields a lower objective value, effectively ensuring 

that regions with maximum "heat" are prioritized as 

optimal through minimization [31]. 

3.5.2 Update the population 

 

As outlined earlier, the initial swarm consists of a 

group of ladybugs that are randomly dispersed 

throughout the solution space using a uniform 

probability distribution. These initial positions are 

assessed using a predefined fitness (objective) 

function, and the individuals are then sorted based 

on their performance. The entire swarm advances 

toward the region with the highest intensity (heat) 

through a coordinated movement mechanism. 

Owing to the inherently social behaviour of 

ladybugs, they navigate the environment by 

maintaining collective alignment with nearby 

members of the group. Ladybugs rely on 

communicative signals emitted by others in the 

swarm to guide their movement. As a result, they 

tend to follow the members ahead of them—those 

that have already discovered warmer (more optimal) 

locations in the search landscape. In this conceptual 

model, the "leading" ladybugs are those individuals 

that have located regions with better objective 
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function values compared to their peers.To 

effectively maintain a balance between the 

exploration of new regions and the exploitation of 

known promising areas, a mutation operator is 

incorporated. This operator is applied to a subset of 

the population at random during each iteration, 

introducing variation and allowing the algorithm to 

escape local optima. Therefore, during each position 

update phase, a ladybug's location in the search 

domain is adjusted either by mimicking the 

movements of more successful individuals or by 

undergoing a mutation-driven change—both of 

which are crucial to the search process and are 

detailed in subsequent steps. 

3.5.2.1 Update according to mutation process 

 

Incorporating mutation into the population update 

mechanism holds a pivotal place in elevating the 

exploration of unexplored regions within the search 

space and helps in avoiding entrapment in local 

optima. Additionally, introducing a mutation phase 

within the search procedure significantly contributes 

to accelerating the convergence rate of the 

algorithm. Therefore, the position adjustment 

process for each individual ladybug is randomly 

determined—either through interaction with other 

members of the population or through a mutation 

operation. 

In this context, let us assume the ith ladybug has been 

selected for mutation. The number of decision 

variables in the ith ladybug that are subject to 

mutation is calculated using the formulation 

presented in Equation (5). 

𝑛m = round(𝑛 ∗ 𝜇m),                 (5) 

In this context, 𝜇m denotes the mutation probability, 

and n represents the total number of decision 

variables. Consequently, 𝑛m variables are randomly 

chosen from the available n decision parameters of 

the ith ladybug.  

These randomly selected variables are then 

substituted with new values drawn from the 

permissible solution space, effectively updating the 

corresponding positions in the ith ladybug's 

configuration. 

3.6 Hyper parameter Tuning Process  

 

The ladybug beetle are utilized to elevate the weights 

of GRU’s dense networks. Initially, the 

hyperparameters are taken spontaneously and given 

to the GRU training network.  

The novel fitness function which is coined based on 

LBO model is given in Equation (6) 

            𝐹itness Function =
 Min(( Predicted Accuracy −
Actual Accuracy))                                                      (6)        

The Fitness Function (FF) is computed which relies 

on the minimum error which is measured by MSE 

(mean Square Error) among the predicted value and 

actual value. Once the hyperparameters are 

optimized using Equation (6), dense training layers 

classifies data into   normal and attack data. The 

complete implementation of the recommended 

approach is depicted in Algorithm-1. 

Steps Algorithm-1 // Pseudo Code for the Proposed 

Model 

01  Input = Bias weights, Hidden layers, Learning 

Rate, Epochs. 

02 Output:  Prediction of Normal/ASD 

03 Randomly allocate the hidden layers, bias 

weights, learning rate, epochs. 

04 Commence the three parameters such as  

05  While (true)        

06     Compute the output from GRU cells utilizing 

equation (1) & (2) 

07           Compute the FF utilizing the equation (6) 

08       For t=1 to N where N= Maximum Iteration 

09         Allocate the bias weights and input layers by 

equation (3) (4) and (5) 

10                         Compute the FF utilizing equation 

(6) 

11                                           If (FF = = threshold) 

12                                                                           Go to Step 17 

13                                       Else    

14                                                  Go to Step 08 

15 End 

16 End 

17     If (output value <=1) 

18                 //Normal is Ascertained  

19 Else if (output value >1 && output value <=2) 

20                 //Attack is focused 

21 Else 

22  Go to Step 09 

23 End 

24 End 

225 End 

 

3.7 Federated Learning layer 

 

The proposed model incorporates a Federated 

Learning (FL) framework, a decentralized machine 

learning paradigm where multiple IoT devices 

collaboratively build a shared global intrusion 

detection model without exchanging raw data. 

Unlike traditional centralized methods, this 

approach enables each node within the IoT 

environment to locally train a approach on its 

sensitive data and send only the upgraded attributes 

to a central coordinating server. The server 

aggregates these updates to construct a robust global 

model, trained collectively across all participating 

nodes. This methodology ensures data privacy and 

confidentiality, which are critical in IDS for IoT 

networks. By leveraging FL, the model achieves 
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improved detection performance, reduced latency, 

better privacy preservation, and energy efficiency—

essential for resource-constrained IoT devices. The 

training process of the recommended privacy-

preserving federated intrusion detection system is 

detailed in Algorithm-2. 

Steps 

Algorithm-2 Federated Learning for the 

Proposed Privacy-Preserving Intrusion 

Detection Model 

1 

The central cloud infrastructure distributes the 

initial intrusion detection model to all IoT edge 

devices participating in the federated setup. 

2 

Every IoT device locally trains the approach by 

utilizing its own network traffic data, ensuring 

that raw data remains private and is never shared 

externally. 

3 

The locally optimized model parameters are 

securely encrypted and transmitted back to the 

cloud server. 

4 

The cloud server accumulation all retrieved 

encrypted model attributes to construct an 

improved global intrusion detection model. 

5 

The central server checks for convergence by 

evaluating the fitness function defined in 

Equation (6). If the condition is met, the 

federated training concludes; otherwise, the 

updated global model is redistributed, and the 

cycle repeats from Step 1. 

 

4. Results and Discussions 
 

4.1 Implementation  

 

The proposed solution was fully developed and 

executed on an Intel-based workstation equipped 

with an Intel Core i7 processor, an NVIDIA graphics 

processing unit (GPU), 16 gigabytes of RAM, and a 

processing speed of 3.2 GHz, ensuring efficient 

implementation and testing phases. 

4.2 Performance Metrics 

 

Performance metrics like precision, accuracy, 

specificity, F1-score and recall are evaluated to 

examine the efficacy of the proposed privacy-

preserving intrusion detection model within the IoT 

environment. These metrics are compared against 

other advanced deep learning techniques to highlight 

the supremacy of the recommended approach. In 

addition to performance, latency overhead is also 

measured to ensure efficiency in real-time IoT 

operations. The mathematical formulations for 

computing these performance metrics are 

summarized in Table 2. To mitigate overfitting and 

improve model generalization, an early stopping 

strategy is employed, which terminates the training 

process once the validation performance shows no 

further improvement across consecutive iterations. 

 

Table 2. Performance measures utilized in the 

examination 

Performance Measures Expression 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Recall TP

T P+FN
 x100 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision 𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

F1-Score 
2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

TP & TN are True Positive & negative, FP & FN are 

False Positive& negative. 

A classification outcome in a prediction task can be 

divided into four fundamental categories: TP 

represents situations where the predicted output 

correctly matches the actual positive case. FP 

denotes cases in which the model incorrectly 

predicts a positive result when the actual label is 

negative. In contrast, FN involves instances where a 

truly positive case is inaccurately predicted as 

negative. Finally, TN refers to cases where the 

prediction accurately reflects a negative outcome, 

consistent with the real negative label of the data 

point. 

Figure 6. Performance Metrics for the Suggested 

procedure
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Table 3. Performance Metrics for the recommended approach

Algorithm Accuracy Precision Recall F1-Score Specificity 

Hybrid CNN-GRU 96.8 96.5 96.2 96.35 96.4 

Red Fox + RBF 95.6 95.1 94.9 95.0 95.2 

CNN 94.8 94.3 93.7 94.0 94.5 

ML (AOA-based) 95.2 94.9 94.0 94.45 94.8 

K-Best + Ensemble ML 95.5 94.8 94.2 94.5 95.0 

Recommended approach 98.9 98.7 98.6 98.65 98.8 

 

Figure 7. Comparative Analysis of suggested procedure 

in terms of performance metrics 

 

Figure 8. Comparative Analysis of suggested procedure 

in terms of performance metrics 

Figures 7 and 8 present a comparative analysis of the 

proposed method against existing approaches using key 

performance evaluation metrics. Table 3 displays the 

evaluation metrics of the recommended approach. 

 

Figure 9. Confusion Matrix for the recommended 

approach 

The confusion matrix in figure 9 illustrates the 

effectiveness of the recommended IDS on the testing 

dataset comprising 1,099,055 records. It achieved 

543,483 true positives and 543,482 true negatives, 

indicating highly accurate detection of both intrusion 

and normal instances. Only 6,045 records were 

misclassified in each category, reflecting minimal 

false positives and false negatives. This balanced 

and robust performance aligns with the reported 

accuracy of 98.9%, showcasing the model's 

reliability. Figure 10 illustrates the Receiver 

Operating Characteristic (ROC) curve for the 

proposed approach. The convergence analysis 

depicted in the figure 11 compares the performance 

of the recommended approach with five residing 

intrusion detection methods. The proposed LBO-

GRU model demonstrates a faster and more 

consistent reduction in convergence time, especially 

after 20 iterations. 
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Figure 10. ROC for the recommended approach 

 

Figure 11. Convergence Analysis for the Recommended 

Approach 

The Red Fox + RBF method also shows significant 

improvement, outperforming others in later stages. 

In contrast, methods like CNN, ML (AOA-based), 

and K-Best with Ensemble exhibit slower or 

stagnant convergence behavior. This highlights the 

efficiency of the proposed optimization in fine-

tuning neural network parameters. Overall, the 

proposed model ensures quicker convergence, 

indicating better training performance for IDS in IoT 

environments. 

5. Conclusion 
 

The recommended intrusion detection approach, 

built using an optimized GRU framework and 

trained on a substantial dataset of over 2.5 million 

training records and 1 million testing records, has 

shown remarkable performance in accurately 

identifying intrusions within IoT environments. 

With an overall accuracy of 98.9%, the model 

significantly surpasses residing approaches in terms 

of recall, precision, F1-score, and specificity. The 

confusion matrix highlights the model's ability to 

minimize both false positives and false negatives, 

demonstrating a high degree of reliability in real-

time classification. The convergence analysis further 

indicates that the proposed model reaches optimal 

performance faster and more consistently than 

traditional models such as CNN, ML, and K-Best 

feature-based techniques. This makes the model not 

only accurate but also efficient for real-time 

intrusion detection. Overall, the model’s capability 

to generalize across a large volume of data and detect 

intrusion patterns precisely makes it a robust and 

scalable solution for ensuring the security of IoT-

based networks.Future work can focus on integrating 

adaptive learning mechanisms to handle evolving 

cyber threats dynamically. Additionally, the 

approach can be enhanced for deployment in real-

time edge and fog computing environments to 

reduce latency. Incorporating lightweight encryption 

and privacy-preserving mechanisms can also ensure 

secure and scalable implementation. 
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