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Abstract:  
 

Diabetic Retinopathy (DR) is a common problem of diabetes mellitus, which causes 

lesions on the retina that affect vision. If it is not detected early, it can lead to blindness. 

Unfortunately, DR is not reversible, and treatment only sustains vision. Early detection 

and treatment of DR can significantly reduce the risk of vision loss. Unlike computer-

aided diagnosis systems, ophthalmologists' manual diagnosis process of DR retina 

fundus images is time-, effort-, and cost-consuming and prone to misdiagnosis. 

Recently, deep learning has become one of the most common techniques that have 

achieved better performance in many areas, especially in medical image analysis and 

classification. Convolutional neural network models are more widely used as a deep 

learning method in medical image analysis, and they are highly effective. In this 

context, this work proposes and investigates hybrid CNNs using support vector 

machines and compares them with state-of-the-art CNN architectures. To select which 

models to use we tested 10 state-of-art CNN architectures: EfficientNetV2S, 

EfficientNetB0, ResNet50, DenseNet121, MobileNetV2, InceptionV3, Xception, 

VGG16, VGG19 and NASNetMobile. We formed the 9,815 DR dataset with images 

from the Indian Diabetic Retinopathy Image Dataset (IDRiD), Kaggle’s Diabetic 

Retinopathy dataset, and images from American Eye Hospital Hyderabad. The results 

showed that the hybrid CNNs using support vector machines tend to present the best 

results. The experimentation outcome showed that the proposed approach classifies all 

the classes of Diabetic Retinopathy and performs better compared to other methods 

with an accuracy of 90.02%. 

 

1. Introduction 
 

Diabetic Retinopathy, one of the complications 

caused by diabetes, is globally considered a public 

health concern, with a notably high incidence in 

India. The World Health Organization (WHO) 

predicts that diabetes will be 'roughly 783 million 

people impacted by diabetes' by 2045[1]. WHO's 

observation is verified by the fact that DR is rapidly 

increasing in prevalence. If it is not properly 

diagnosed and treated effectively, people who 

suffer from DR will lose their vision permanently. 

The DR is at staggering levels throughout the world 

and in high amounts in India. About 22.4 % of 

cases of DR among the urban population in Andhra 

Pradesh were found in the state of India by itself. 

The same pattern holds true for the area in the south 

Indian state of Telangana. Factors such as DR of 

diabetes and inadequate glycaemic management 

have been identified as the cause for the speedy 

growth rate of the DR in Telangana [2].  

The DR is projected to be the leading cause of 

blindness in the world, and hence, an effective 

method to screen retinas is an imperative solution. 

Customized screening methods are used by 

resource-rich nations, which incorporate the 

individual's profile of risk using factors such as 

duration of diabetes and prior diagnosis of DR. It 

offers a customized way to test, catch early, detect 

accurately, and intervene quickly. In cases of lack 

of robust Eye Screening Systems or systems to 

screen DR, there is delayed diagnosis, and chances 

of vision impairment increase. The problem that 

this study aims to solve is that societies with an 
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elevated number of Diabetic Retinopathy patients 

lack vast machinery to perform individualized 

screening implemented subsequently by Artificial 

Intelligence (AI) based retinal screening.   

The AI has the possibility of creating a cheaper and 

easier alternative solution for diabetic retinopathy 

screening [32]-[34]. The sensitivity and specificity 

that AI provides make it a viable system that can 

withstand the screening workload. Studies suggest 

that AI algorithms may have achieved high levels 

of sensitivity (80-90%) and specificity (86-100%) 

for the identification of the DR. The ability to 

automate and improve the efficacy of the retinal 

screening processes for DR makes AI-based 

systems a more affordable solution with a higher 

degree of accuracy. The application of AI in the 

screening methods may prove useful in removing 

the economic barrier on the way to ensuring early 

detection and thereby reducing the strain on 

healthcare systems. This technology offers a helpful 

solution to the global challenge of the DR and its 

associated costs in healthcare. 

Convolutional neural networks (CNNs) are made to 

distinguish patterns among the input data and link it 

to the class labels that fall out. Tasks such as image 

recognition and classification are the major 

examples of the uses of CNNs [4, 5, 6]. The field of 

medical image processing has documented 

numerous CNN based architectures explored [6,7]. 

Furthermore, previous work [8–10] performed 

classification tasks using CNNs while integrating 

them with traditional machine learning techniques 

like Support Vector Machines (SVM), k nearest 

Neighbour (k-NN), and Decision Trees (DT). In 

this paper, a hybrid model for diabetic retinopathy 

image classification as healthy, mild, moderate, 

severe, and proliferative diabetic retinopathy (PDR) 

is presented.  

The structure of this paper is organized as follows: 

Section 2 provides an overview of the stages of 

diabetic retinopathy, Section 3 reviews related 

studies, Section 4 outlines the proposed 

methodology, Section 5 discusses results and 

findings, and Section 6 concludes the study. 

 

2. Stages of Diabetic Retinopathy 

 

The development of the DR among diabetic 

patients occurs in multiple progressive stages. 

Distinct retinal changes will be observed in each 

stage. At every stage, the severity of damage to the 

retinal blood vessels increases, resulting in minor 

alterations to abnormal blood vessel growth that 

impairs vision. Understanding the progression of 

DR is critical for timely diagnosis, intervention, and 

prevention of vision loss. The stages of DR are 

categorized into Mild, Moderate, and Severe Non-

Proliferative Diabetic Retinopathy (NPDR), 

culminating in Proliferative Diabetic Retinopathy 

(PDR), each described in detail below. 

 

Stage 1: Mild NPDR 

 

The first stage of diabetic retinopathy, known as 

mild non-proliferative diabetic retinopathy 

(NPDR), is characterized by localized changes in 

the retinal blood vessels. The outward signs of 

these changes are tiny protuberances or 

microaneurysms in the blood vessels. 

Microaneurysms can cause little blood and fluid 

leaks into the retina and show up as red focal spots 

on retinal imaging. The macula, the central part of 

the retina responsible for direct and clear vision, 

may somewhat enlarge as a result of fluid 

infiltration during this stage. Despite these early 

changes, vision is usually unaffected, and people 

with moderate NPDR frequently don't exhibit any 

symptoms at all. Timely identification is crucial, 

even if therapy is typically not required at this 

stage. Physicians who detect moderate non-

proliferative diabetic retinopathy (NPDR) may 

advise lifestyle modifications and more precise 

control of diabetes to avoid exacerbation of the 

disease. Effective management of blood glucose, 

blood pressure, and cholesterol levels is crucial for 

decelerating the advancement of diabetic 

retinopathy. 

 

Stage 2: Moderate NPDR 

 

The second stage of the DR, known as Moderate 

Non-Proliferative Diabetic Retinopathy (NPDR), is 

characterized by the enlargement of blood veins 

that limit the blood flow to the retina. In this stage, 

significant damage is caused to blood veins, which 

constricts the flow of blood to the retina, thereby 

restricting access to necessary nutrients. In contrast 

to mild NPDR, which is characterized by the 

existence of a small number of microaneurysms, 

moderate NPDR entails the presence of several 

microaneurysms and a progressive increase in 

blood vessel leakage. During this phase, the 

excessive buildup of fluid and blood in the macula 

might result in more prominent symptoms, such as 

impaired vision. An individual with intermediate 

NPDR is more susceptible to illness advancement. 

According to a retrospective study conducted in 

2020, there is a 17.6% probability that an individual 

with mild non-proliferative diabetic retinopathy 

(NPDR) may advance to severe NPDR or PDR 

within five years after being diagnosed. 

 

Stage 3: Severe NPDR 
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In the third stage of DR, known as NPDR, the 

retinal blood vessels undergo more substantial 

damage. Retina loses access to nutrients as the 

blood flow is severely hampered. Unlike in the mild 

NPDR, characterized by a small number of 

microaneurysms, moderate NPDR experiences the 

presence of several microaneurysms and a 

progressive increase in blood vessel leakage. 

During this phase, the excessive buildup of fluid 

and blood in the macula might result in more 

prominent symptoms, such as impaired vision. An 

individual with intermediate NPDR is more 

susceptible to illness advancement. According to a 

retrospective study conducted in 2020, there is a 

17.6% probability that an individual NPDR may 

advance to severe NPDR or Proliferative Diabetic 

Retinopathy (PDR) within five years after being 

diagnosed. As the illness progresses, severe NPDR 

leads to blockages in more significant segments of 

blood vessels in the retina. This results in a 

substantial reduction in blood circulation in this 

region. A physician may detect severe NPDR 

caused by intraregional microvascular 

abnormalities (IRMA). Angiogenesis refers to the 

atypical branching and dilatation of pre-existing 

blood vessels. The blood vessels in question are 

remarkably narrow and delicate, which can 

manifest prominent symptoms, including impaired 

eyesight, dark spots, and areas of limited vision. A 

clinician can classify severe non-proliferative 

diabetic retinopathy (NPDR) using the 4-2-1 

criteria, reflecting Hemorrhages are observed in all 

four retinal quadrants or Venous beading is seen in 

two or more quadrants or Intense retinal migratory 

avascular necrosis presents in at least one quadrant 

 

Stage 4: PDR  

 

The last stage and the most advanced form of 

diabetic retinopathy is called PDR. Vascular 

problems at this point have led to the retina's 

oxygen deprivation and the growth of new, fragile 

blood vessels. The retina and the vitreous, the 

gelatinous substance that fills the eye's posterior 

cavity, are where these blood vessels form. Visual 

impairment may result from these newly developed 

blood vessels, often leaking blood into the virtue. 

Additionally, these recently created blood vessels 

may produce scar tissue, which could result in 

macula problems or retinal detachment 

downstream. This can also damage the optic nerve 

and increase intraocular pressure. People may 

experience serious consequences at this stage and 

require medical assistance to stabilize their visual 

acuity. Failure to treat PDR can result in severe 

vision impairment and complete loss of eyesight. 

Diabetic macula edema refers to the swelling of the 

macula, the central region of the retina responsible 

for providing color vision and fine detail 

perception. Diabetic macula edema is a possible 

consequence of retinopathy, characterized by fluid 

buildup due to leaky blood vessels. This fluid 

induces macula swelling, leading to decreased 

visual acuity. Glaucoma is a medical disorder 

characterized by increased fluid pressure within the 

eye, which can harm the optic nerve and result in 

the progressive loss of eyesight. Diabetes can harm 

the ocular blood vessels, leading to elevated 

intraocular pressure. Consequently, individuals 

with diabetes have a higher susceptibility than the 

general population to the development of glaucoma. 

A cataract is a spherical abnormality in the lens 

layer of the eye. In older people, cataracts often 

develop due to the degradation of proteins in the 

eye. Figure 1 shows the different classes of diabetic 

retinopathy. 
  

(a) Normal Image (b). Mild NPDR (c)Moderate 

NPDR 

(d). Severe 

NPDR 

(e). PDR 

 

 

Figure 1.  Different Classes of Diabetic Retinopathy. 

Distinct differences can be noticed when a 

normal fundus image and a DR image are 

compared, as shown in Figure 2. Veins, arteries, the 

optic disc, macula, and fovea appear clear, healthy, 

and uniformly distributed with no visible damage in 

the normal funds. But pathological features such as 

aneurysms (small dark spots), haemorrhages 

(bleeding areas), cotton wool spots (white fluffy 

patches indicating nerve fibre damage), hard 

exudates (yellow lipid deposits), and abnormal 

blood vessel growth associated with proliferative 

DR. are observed in the DR-affected fundus, these 

abnormalities highlight the damage caused by DR 

that can lead to vision impairment if not diagnosed 

and treated promptly.  

Detecting the onset of DR is crucial to preserve 

the patient's visual acuity. It has been established by 

numerous studies in this field that early detection 
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can prevent 90% of diabetic patients from 

developing diabetic retinopathy [11]. The diagnosis 

of DR can be performed either by a human 

ophthalmologist or by an automated methodology, 

with inherent advantages and limitations. The 

expertise of the ophthalmologist is the only 

advantage of the human intervention model. 

However, the skill and expertise of the 

ophthalmologist face limitations when the trace of 

the onset of DR is subtle. AI, with all its 

advancements, offers an alternative solution in 

early disease identification. The accuracy of an AI-

driven automated method is higher and offers 

greater advantages than the manual DR detection 

approach. The AI-driven method significantly 

lowers the likelihood of human error because it 

reduces the load on the ophthalmologist. 

Furthermore, compared to manual testing, an 

automated system can detect lesions and anomalies 

far more easily and effectively. Therefore, it is 

essential to automate the identification of diabetic 

retinopathy. Both machine learning and deep 

learning approaches can be used to create DR-

automated systems. Gathering retinal images 

showing signs of DR is the initial stage ML 

techniques. These photos then go through a number 

of picture pre-processing steps. 

 

 

Figure 2. Difference between the normal fundus image 

and diabetic retinopathy image. 

3. Related work 

 

A modified ResNet-50 network with pre-processing 

methods was used by Lin CL and Wu KC to 

improve the detection of diabetic retinopathy (DR) 

in retinal fundus images. The approach addressed 

overfitting and loss fluctuation by incorporating 

structural changes to ResNet-50, such as 

regularization and adaptive learning rates, as well 

as a standard operating procedure (SOP) for image 

pre-processing. The model achieved a training 

accuracy of 83.95% and a test accuracy of 74.32%, 

outperforming well-known CNNs like Xception 

and VggNet-16. [12] The study's main flaw is its 

narrow focus on getting the best detection accuracy 

for DR. The strategy does not thoroughly examine 

sophisticated techniques to improve accuracy 

further or address problems like imbalanced 

datasets, which are common in DR detection, even 

though it places emphasis on preprocessing and 

visualization techniques to improve model 

calibration. Pratt et al. introduced a CNN-based 

method for detecting diabetic retinopathy from 

digital fundus images, highlighting the challenges 

of accurately assessing its severity due to its 

complexity and time-intensive nature. Their 

approach demonstrated a sensitivity of 95% and an 

accuracy of 75% on validation datasets, showcasing 

its potential for effective DR diagnosis [13]. 

A method developed by combining CNN with an 

IDX-DR device was used to detect and classify DR 

in fundus images by Abramoff et al. [14]. They 

employed data augmentation and integrated various 

CNNs with a Random Forest classifier to identify 

DR lesions and normal retinal anatomy on the 

Messidor-2 dataset with 1748 images. Images on 

the dataset were categorized into no DR, referring 

to DR, or vision-threatening DR. An AUC of 0.980, 

sensitivity of 96.8%, and specificity of 87.0% were 

achieved through this approach. However, 

classifying mild DR images as no DR and not 

considering all five DR stages are highlighted as 

limitations of the work. 

The evaluated the performance of three pre-trained 

CNN architectures—VGG16 [15], [16], AlexNet 

[17], and Inception Net V3 [18]—for detecting the 

five stages of diabetic retinopathy (DR) using the 

Kaggle [19] dataset is presented. During pre-

processing, images were resized to 224×224 pixels 

for VGG16, 227×227 pixels for AlexNet, and 

299×299 pixels for InceptionNet V3. The dataset 

contained only 166 images, leading to an average 

accuracy of 50.03% for VGG16, 37.43% for 

AlexNet, and 63.23% for InceptionNet V3. The 

study was limited by the small dataset size, which 

restricted feature learning, inadequate pre-

processing, and the use of a single dataset for 

evaluation. A CNN-TL DenseNet121 model for 

diabetic retinopathy detection, trained on 3050 

images is presented in [20]. The model was fine-

tuned and tested against various architectures, 

including Inception V1, Inception V2, Inception 

V3, Xception, VGG16, ResNet-50, DenseNet, and 

AlexNet. Their approach achieved a validation 

accuracy of 84.10%, demonstrating its effectiveness 

in detecting DR. 

A weakly-supervised framework for diabetic 

retinopathy detection using DRNet and CNN is 

presented in [33]. The methodology included image 

augmentation, resizing, Gaussian distribution, and 

Euclidean distance techniques. Tested on the 

IDRiD dataset, the model achieved an accuracy of 

84.50%, demonstrating its effectiveness in retinal 

image analysis for DR detection. The authors in 
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[34] have proposed a diabetic retinopathy detection 

approach combining improved Grey Wolf 

optimization for feature selection with CNN 

classification. Techniques such as augmentation, 

image transformation, and contrast enhancement 

were applied. Tested on datasets Messidor-2, e-

Ophtha, and EyePACS, the method achieved 

specificities of 87%, 94%, and 98%, respectively. 
 

3. Proposed Method 

 
This work can be broken down into six phases: 1) 

merging three datasets, 2) preparing the fundus 

images, 3) applying three kinds of augmentation 

methods, 4) developing a foundational model, 5) 

conducting model optimization, and 6) analyzing 

performance and results. The workflow of this 

research is illustrated in Figure 3. This section 

provides a detailed explanation of each of the steps. 

1. Dataset creation 

Many datasets used for DR detection suffer from 

data imbalance, where images are unevenly 

distributed across classes. For example, Ghosh et 

al. [10] utilized the Kaggle dataset to classify DR 

into stages. The dataset includes 35,126 training 

images and 53,576 test images, but the training set 

is heavily imbalanced: 73.5% of images are labeled 

as class 0, while only 6.9%, 15.1%, 2.5%, and 2.0% 

belong to classes 1, 2, 3, and 4, respectively.     

Information in Table 1 and 2 conclude that the 

images in both two datasets are not appropriately 

balanced. Therefore, to overcome the imbalanced 

distribution in the DR images we formed the new 

dataset by combining the images from the Indian 

Diabetic Retinopathy Image Dataset (IDRiD), 

Kaggle’s Diabetic Retinopathy dataset, and in 

house images collected from American Eye 

Hospital Hyderabad and shown in the table 3. 

 

 
Figure 3. Block diagram of the proposed method. 

 

 
Table 1. Distribution of DR images in Kaggle dataset. 

Class Label No. of Images Percentage 

0-No DR 25,810  73.50%  

1-Mild NPDR 2443  6.90%  

2-Moderate NPDR 5292  15.10%  

3-Severe NPDR 873  2.50%  

4-Proliferative DR 708 2.00%  

  

The in-house dataset initially exhibited class 

imbalance, with the majority class (No DR) 

containing 2805 images, while severe and 

proliferative DR had only 383 and 585 images, 

respectively. To address this imbalance, the 

Synthetic Minority Oversampling Technique 

(SMOTE) [22] was applied. SMOTE generates 

synthetic samples for minority classes by 

interpolating between existing instances, avoiding 

simple duplication of images. By creating synthetic 

samples along the feature space, SMOTE not only 

increases the number of minority class images but 
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also enhances diversity, leading to a more robust 

training dataset. After applying SMOTE, the 

dataset became balanced, as shown in the table 

below, which significantly improved model 

performance. This balanced dataset ensures a fair 

representation of all classes, leading to improved 

model generalizability and reliability. 

 

 
Table 2. Distribution of DR images in IDRiD dataset. 

Class Label No. of Images Percentage 

0-No DR 129 28.35% 

1-Mild NPDR 22 4.84% 

2-Moderate NPDR 156 34.29% 

3-Severe NPDR 84 18.46% 

4-Proliferative DR 64 14.07% 

 
Table 3: Inhouse dataset by combine the data Indian 

Diabetic Retinopathy Image Dataset (IDRiD), Kaggle’s 

Diabetic Retinopathy dataset, and images from 

American Eye Hospital Hyderabad. 
Class Label No. of Images 

0-No DR 2805 

1-Mild NPDR 740 

2-Moderate NPDR 1899 

3-Severe NPDR 383 

4-Proliferative DR 585 

 

Table 4. In-house dataset after augmentation. 
Class Label No. of 

Images 

Final Images After 

SMOTE 

0-No DR 2805 2805 

1-Mild NPDR 740 1899 

2-Moderate 

NPDR 

1899 1899 

3-Severe NPDR 383 1899 

4-Proliferative 

DR 

585 1899 

  

2. Pre-Processing 

 

Preparing images for neural network input is a 

crucial step to achieving optimal accuracy. This 

involves tasks such as removing artefacts, 

eliminating noise, and enhancing features that may 

be unclear but significant. The precise and timely 

detection of diabetic retinopathy (DR) depends on 

high-quality retinal images. However, publicly 

available retinal fundus datasets often vary in 

resolution and compression formats, frequently 

containing background noise. DR classification 

becomes difficult without effective pre-processing, 

as neural networks generally perform better with 

clean, enhanced, and well-processed images. In this 

study, we first remove the background and denoise 

the images using the Non-Local Means denoising 

method. Subsequently, resizing and pixel scaling 

are performed, as detailed in the following section. 

A. Background Removal: 

Background removal is an essential step in image 

pre-processing, and it can be implemented using a 

binary mask. This process involves applying the 

mask M(x,y) to the image I(x,y) to retain only the 

foreground pixels while eliminating the 

background. Mathematically, it is represented as 

(1). 

𝐼𝑏𝑔(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) ⋅ 𝑀                                (1) 

 

In (1), I(x,y) is the pixel value of the input 

image,M(x,y) is the binary mask (1 for foreground 

and 0 for background). 

B. Denoising Using NLMD (Non-Local Means 

Denoising): 

Denoising retinal fundus images are essential, 

especially to enhance image quality while 

preserving critical features such as lesions and 

exudates necessary for accurate classification [23]. 

The Non-Local Means Denoising (NLMD) 

technique [24] is employed to effectively reduce 

noise without compromising these vital features. 

Non-Local Means Denoising (NLMD) reduces 

noise by computing the weighted average of similar 

pixels within the neighbourhood Ω of a pixel (x,y). 

The denoised pixel value is calculated using: 

𝐼𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑥, 𝑦)

=
∑ 𝑤𝑝∈𝛺 (𝑝, 𝑞) ⋅ 𝐼(𝑝)

∑ 𝑤𝑝∈𝛺 (𝑝, 𝑞)
                                                     (2) 

In (2), 𝑤(𝑝, 𝑞)   is the weight measuring the 

similarity between pixel 𝑝  and 𝑞, given by:  

𝑤(𝑝, 𝑞)  

= exp (−
∥ 𝐼(𝑝) − 𝐼(𝑞) ∥2

ℎ2 )                                      (3) 

In (3), Ω is the neighbourhood of pixel (x,y) and h 

is the filtering parameter. 

C. Resizing: 

Once the image pre-processing is completed, it is 

important to standardize the image size before 

inputting them into the neural network to minimize 

the model's computational complexity. For this 

purpose, the processed images are resized to 

dimensions of 224×224. After these steps, the 

resulting images are free from artifacts and noise. 

As shown in Fig. 10(A), the original image includes 

irrelevant black background regions, classified as 

artifacts, and the features of the fundus images 

appear unclear. The preprocessing effectively 

enhances image quality, making critical features 

more distinguishable for analysis. Resizing can be 

represented mathematically using interpolation (4). 
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𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑(𝑥′, 𝑦′) = 𝐼 (
𝑥⋅𝑊𝑜𝑟𝑖𝑔

𝑊𝑛𝑒𝑤
,

𝑦⋅𝐻𝑜𝑟𝑖𝑔

𝐻𝑛𝑒𝑤
)                (4) 

In (4), 𝑊𝑜𝑟𝑖𝑔 , 𝐻𝑜𝑟𝑖𝑔 are the original width and 

height and are the resized dimensions. 

 

Pixel Scaling: 

Pixel scaling is a crucial pre-processing step in 

image-based tasks, normalizing pixel values to a 

consistent range, typically [0,1]. This 

transformation improves neural network 

performance by preventing the dominance of large 

intensity values and ensuring equal weight for all 

features. It accelerates model convergence by 

stabilizing gradients during backpropagation and 

reduces computational errors caused by floating-

point precision issues. Pixel scaling also ensures 

compatibility with pre-trained models, which are 

often trained on normalized data. By enhancing 

numerical stability and training efficiency, pixel 

scaling plays a vital role in achieving accurate and 

reliable results in image processing and machine 

learning tasks. Normalization of pixel values to 

[0,1] range is given by (5). 

𝐼𝑠𝑐𝑎𝑙𝑒𝑑(𝑥, 𝑦) =
𝐼(𝑥,𝑦)−min(𝐼)

max(𝐼)−min(𝐼)
                                (5) 

3. Data Augmentation 

Data augmentation [25] played a pivotal role in this 

study to address the challenges of dataset imbalance 

and enhance data diversity. While numerous 

techniques exist to prevent overfitting, 

augmentation is a core strategy as it allows the 

generation of additional training samples from 

limited data. Augmentation-based oversampling 

techniques effectively expand the dataset and 

mitigate the risk of overfitting by introducing 

variations that closely resemble real-world data 

[26]. Ensuring efficient data generation is critical, 

especially in the medical domain, where 

maintaining the quality of images and preserving 

critical features is essential [27, 30]. 

 

Figure 4.  Prepressed images. 

 Improper augmentation can compromise the 

integrity of medical data, which is why care was 

taken to generate realistic samples that accurately 

represent all potential variations. This study applied 

three augmentation methods: geometric 

transformations, elastic deformations and 

photometric adjustments. These techniques created 

varied and representative augmented samples while 

maintaining the same number of images across all 

methods. By employing these approaches, the study 

ensured that the dataset was not only balanced but 

also enriched with high-quality and diverse 

samples, crucial for improving the robustness and 

accuracy of the model. 

A. Geometric Transformations (Rotation): 

Rotation is a widely used technique in image 

augmentation [28], allowing images to be rotated at 

any desired angle based on specific requirements. 

This method ensures that the essential information 

in the image remains unchanged, regardless of its 

orientation. Rotation helps create diverse 

perspectives of the same image, improving the 

model's robustness and reducing bias toward 

orientations. Equation (6) [29] gives the 

mathematical representation for the rotation 

technique, which defines how pixel positions are 

transformed during rotation. This approach is 

especially beneficial in tasks requiring invariance to 

object orientation, such as medical image analysis 

and classification. For rotation by an angle θ is 

given by (6). 

[
𝑥′

𝑦′] = [
cos𝜃 −sin𝜃
sin𝜃 cos𝜃

] ⋅ [
𝑥
𝑦]                                  (6)                                            

B. Elastic Deformation: 

When forces are applied to a continuous body, they 

create a stress field that causes deformation. If the 

original shape is restored after the removal of the 

stress field, the deformation is classified as elastic 

[19]. This concept is utilized to generate deformed 

retinal fundus images, where the image   appears 

stretched but retains all its critical information. 

Elastic deformation is particularly useful for 

augmenting medical images, as it preserves 

essential features required for accurate analysis, as 

shown in the equation (7). Figure 11 demonstrates a 

deformed version of the pre-processed retinal 

fundus image, showing that, despite the 

deformation, all significant features remain intact 

and clearly visible. 

Elastic deformation applies displacement fields Δ_x 

(x,y)  and Δ_y (x,y) to pixel coordinates: 
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𝐼𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑(𝑥, 𝑦) = 𝐼 (𝑥 + 𝛥𝑥(𝑥, 𝑦), 𝑦 +

𝛥𝑦(𝑥, 𝑦))                  (7) 

C. Photometric Augmentation: 

Photometric augmentation involves modifying the 

RGB channels of an image by transforming each 

pixel’s values (x,y,z) into new values (x′,y′) based 

on predefined heuristics. This technique alters the 

image’s color and lighting while maintaining its 

geometric structure [31], [32]. Common methods 

include color jittering, grayscale conversion, 

filtering, light perturbation, noise addition, 

vignetting, contrast adjustment, and random erasing 

[33]. While increasing dataset diversity is essential, 

it must be done carefully to preserve critical pixel 

information and avoid overfitting. In this study, 

several photometric methods were explored, 

including histogram equalization (HE), saturation, 

Gaussian noise, hue adjustment, brightness, 

contrast, color, and sharpness modifications. 

Among these, adjusting brightness and contrast 

yielded the best results and were selected as the 

photometric augmentation techniques used in this 

research and shown in the equation (8). 

Adjust brightness β and contrast α: 

𝐼𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑(𝑥, 𝑦) = 𝛼 ⋅ 𝐼(𝑥, 𝑦) + 𝛽       (8)                               

To improve diversity as well as robustness of the 

model, the dataset was thoroughly augmented. A 

20° rotation was performed as part of Geometric 

Transformations in order to simulate changes in 

orientation. Realistic distortions were introduced to 

the images by Elastic Deformation with α=40 and 

σ=6 for the morphological changes that are 

expected in the images. Through photometric 

Augmentation we adjusted brightness and contrast 

within ±0.2 to match different bright and dark 

lighting environments common in real world. An 

additional variation was added by applying a Zoom 

Transformation of a zoom factor of 1.3, focusing on 

various parts of the images and simulating different 

observation scales. Collectively, these 

augmentations produced enriched datasets for 

(more) feature learning and model generalization, 

as shown in figure 5. 

                          

 

Figure 5.  Elastic Deformation. 

         

 

Figure 6.  Photometric Augmentation. 

 

Figure 7.  Geometric Transformations (Rotation). 

 

Figure 8. Final Augmented image. 

4. Feature Extraction Using Pre-Trained Models 

A. CNN Feature Extraction: 

The pre-trained models used for feature extraction 

include EfficientNetV2S, EfficientNetB0, 

ResNet50, DenseNet121, MobileNetV2, 

InceptionV3, Xception, VGG16, VGG19, and 
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NASNetMobile. All models were optimized using 

the Adam optimizer. The models were trained with 

varying numbers of epochs and a consistent batch 

size of 32. Specifically, EfficientNetV2S and 

Xception were trained for 7 epochs, 

EfficientNetB0, DenseNet121, InceptionV3, 

VGG16, and VGG19 for 10 epochs, ResNet50 for 5 

epochs, MobileNetV2 for 4 epochs, and 

NASNetMobile for 6 epochs. These configurations 

were chosen to balance computational efficiency 

and model performance for effective feature 

extraction and are shown in equation (9).  

 𝐹𝑙 = 𝜎(𝑊𝑙 ∗ 𝐼 + 𝑏𝑙)                                             (9) 

In (9), * is the convolution operator, W_l and b_l 

are the weights and biases of layer l. σ is the 

activation function (e.g., ReLU). F_l is the feature 

map. 

B. Feature Concatenation: 

Concatenating feature vectors from multiple pre-

trained models enhances performance by 

combining diverse representations. Each model, 

such as EfficientNet, ResNet, and VGG, is 

designed with unique architectures that extract 

different aspects of the input data. By aggregating 

their feature vectors, a richer and more 

comprehensive representation is created. This 

approach leverages the complementary strengths of 

different models, capturing both low-level details 

(e.g., textures, edges) and high-level semantic 

features (e.g., shapes, patterns), which are crucial 

for complex tasks like medical imaging. Moreover, 

concatenation reduces reliance on a single model's 

limitations, improving robustness and 

generalizability across datasets. It preserves 

complementary information that individual models 

may miss, thus increasing the discriminative power 

of the combined feature space. This method is 

particularly beneficial for challenging tasks 

requiring fine-grained classification or detailed 

analysis, as the unified feature vector provides a 

robust foundation for downstream tasks, boosting 

accuracy and reducing the risk of overfitting. As 

shown in equation (10) Concatenate n feature 

vectors F1, F2,…,Fn into a single vector (10). 

𝐹𝑐𝑜𝑛𝑐𝑎𝑡 = [𝐹1; 𝐹2; … ; 𝐹𝑛]                       (10) 

5. Classification Using SVM 

The strengths of multiple pre-trained networks can 

be harnessed by combining their extracted features 

for DR classification. This method involves 

concatenating the feature vectors from various pre-

trained models to create a comprehensive 

representation. The combined feature set is then fed 

into an SVM classifier, which processes these 

features to predict the final output. By leveraging 

the complementary capabilities of different models, 

the approach ensures that critical and diverse 

features are utilized, enhancing classification 

accuracy. The SVM classifier, trained on the 

concatenated features, predicts the DR classes, 

including No DR, Mild, Moderate, Severe, and 

PDR (Proliferative Diabetic Retinopathy). This 

methodology ensures that the input fundus image is 

classified accurately into one of the categories, 

providing a robust framework for automated DR 

detection and analysis. This combination of feature 

extraction and SVM classification demonstrates a 

powerful pipeline for improving the diagnostic 

accuracy of DR classification systems. 

 A. SVM Objective Function (Primal Form): 

The Support Vector Machine (SVM) classifier used 

in this framework optimizes the following objective 

function (11): 

min
𝑤,𝑏,𝜉

1

2
∥ 𝑤 ∥2+ 𝐶                    (11) 

Subject to  

(𝑤𝑇𝐹𝑐𝑜𝑛𝑐𝑎𝑡
(𝑖)

+ 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0                  (12) 

Where w is the weight vector,b is the bias,ξ_i is the 

slack variable for misclassification,C is the 

regularization parameter, and y_i∈{-1,1} are the 

labels. 

Decision Boundary: 

For classification, the Support Vector Machine 

(SVM) predicts the class label of an input using the 

decision function (13): 

f(x) = sgn(wTFconcat + b)                   (13) 

Where f(x): The predicted class label for the input, 

sgn is the sign function, which outputs +1 for 

positive values and −1 for negative values, w is the 

weight vector, representing the orientation of the 

hyperplane, F_concat is the concatenated feature 

vector from multiple pre-trained models and b is 

the bias term, determining the offset of the 

hyperplane. This function evaluates the position of 

the input feature vector relative to the decision 

boundary defined by the hyperplane. If f(x)>0, the 

input is classified into one class (e.g., DR), and if 

f(x)<0, it belongs to the other class (e.g., No DR). 

This approach ensures accurate and robust 

classification. 

B. Kernel Function: 
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In non-linear SVMs, a kernel function K(F_i,,F_j )  

maps input features into a higher-dimensional 

space, enabling the SVM to separate classes that are 

not linearly separable. The kernel function is 

defined as (14). 

 𝐾(𝐹𝑖, 𝐹𝑗) = 𝜙(𝐹𝑖)𝑇𝜙(𝐹𝑗)                              (14) 

Common kernels include Linear: 𝐾(𝐹𝑖, 𝐹𝑗) = 𝐹𝑖
𝑇𝐹𝑗, 

Polynomial: 𝐾(𝐹𝑖, 𝐹𝑗) = (𝐹𝑖
𝑇𝐹𝑗 + 𝑐)

𝑑
 and RBF 

(Gaussian): 𝐾(𝐹𝑖 , 𝐹𝑗) = exp (−
∥𝐹𝑖−𝐹𝑗∥2

2𝜎2 ). 

 

4. Results and Discussions:  

4. 1. Implementation  

Google Colab with a Python 3 runtime and a v5e-1 

TPU hardware accelerator was utilized to simulate 

the categorization models. Three sections 

comprised the results section. While the results for 

DR classification using a classifier with a pre-

trained network are shown in Section A the results 

for different pre-trained networks are shown in 

Section B The use of hybrid networks with ML 

classifiers at the outer layer for DR classification is 

covered in Section C. 

A. The performance of various pre-trained 

models for diabetic retinopathy classification  

As indicated in table 5, the outcomes were assessed 

with consistent hyperparameters, such as the Adam 

optimizer, a batch size of 32, and a learning rate of 

0.0001. With the best accuracy (0.892), precision 

(0.83), recall (0.841), and F1-Score (0.829) among 

the models, Xception was the clear winner and a 

solid option for this task. With F1-Scores of 

0.827and 0.823, respectively, DenseNet121 and 

InceptionV3 also showed strong performance, 

demonstrating their capacity to extract and classify 

features. 

But, ResNet50 and MobileNetV2 exhibited 

significantly lower accuracy and F1-Scores, 

indicating limited effectiveness for this dataset. The 

results highlight the advantages of using high-

performing architectures like DenseNet121 and 

Xception. These methods exhibited remarkable 

robustness in feature representation and model 

accuracy. These findings suggest Xception as the 

most suitable model, while DenseNet121and 

EfficientNetV2S as promising alternatives for 

further optimization. 

 

Table 5. Comparative Performance of Pre-Trained Models on in-house Diabetic Retinopathy Dataset. 

Model Accuracy Precision 

Sensitivity 

 (Recall) F1 Score 

EfficientNetV2S 0.879 0.829 0.778 0.797 

EfficientNetB0 0.827 0.763 0.742 0.751 

ResNet50 0.336 0.248 0.326 0.224 

DenseNet121 0.888 0.817 0.830 0.827 

MobileNetV2 0.441 0.396 0.207 0.138 

InceptionV3 0.887 0.816 0.833 0.823 

Xception 0.892 0.83 0.841 0.829 

VGG16 0.804 0.739 0.581 0.599 

VGG19 0.800 0.716 0.581 0.592 

NASNetMobile 0.606 0.314 0.365 0.330 

 

B. Results for classification of DR images using 

pre-trained networks and ML classifiers  

Table 6 to table 15  evaluates the performance of 

ten pre-trained deep learning models paired with 

machine learning classifiers across multiple 

metrics: Accuracy, Precision, Sensitivity (Recall), 

and F1-Score. The pre-trained models include 

EfficientNetV2S, EfficientNetB0, ResNet50, 

DenseNet121, MobileNetV2, InceptionV3, 

Xception, VGG16, VGG19, and NASNetMobile.  

 

With an accuracy of 0.871102, precision of 

0.836623, and F1-Score of 0.782577, Xception 

with XGBoost outperformed the other 

combinations, demonstrating its capacity to capture 

intricate information and provide reliable 

categorization. With an accuracy of 0.856549 and 

an F1-Score of 0.767784, DenseNet121 with 

XGBoost likewise demonstrated remarkable 

performance, demonstrating its potent feature 

extraction capabilities. In the majority of networks, 

XGBoost continuously beat other classifiers, 

demonstrating its proficiency in handling intricate 

feature spaces. Additionally, Random Forest and 

Bagging produced competitive outcomes, 

especially when combined with InceptionV3, 
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Xception, and DenseNet121. However, classifiers 

like SVM struggled with networks such as 

EfficientNetB0 and ResNet50, likely due to their 

limited capacity for handling non-linear 

relationships. AdaBoost showed lower performance 

compared to other classifiers, often 

underperforming in recall and F1-Score. Among the 

networks, DenseNet121, Xception, and 

InceptionV3 consistently outperformed others, 

highlighting their ability to extract meaningful 

features crucial for classification tasks. In contrast, 

ResNet50 and EfficientNetB0 displayed mixed 

results, suggesting a need for optimization or 

alternative classifiers. Overall, DenseNet121 and 

Xception paired with XGBoost emerged as the 

most effective combinations for DR classification, 

delivering high accuracy and robust results. These 

findings emphasize the importance of combining 

strong feature extractors with advanced classifiers 

to improve DR detection systems.  

Table 6. Performance Metrics of Machine Learning Classifiers Using EfficientNetV2S Pre-Trained Model. 

Class-ifier 

Acc- 

uracy Precision Sensitivity 

F1- 

Score 

SVM 0.709979 0.785058 0.454572 0.436227 

Random 

Forest 0.713098 0.57742 0.473579 0.482953 

Logistic 

Regression 0.705821 0.631727 0.451739 0.446781 

Decision 

Tree 0.60395 0.421492 0.421752 0.421445 

KNN 0.694387 0.520598 0.471361 0.469663 

XGBoost 0.703742 0.530823 0.470632 0.478552 

Bagging 0.712058 0.571028 0.480628 0.489006 

AdaBoost 0.665281 0.436327 0.403798 0.378398 

Table 7. Performance Metrics of Machine Learning Classifiers Using EfficientNetB0 Pre-Trained Model. 

Classifier Accuracy Precision Sensitivity 

F1- 

Score 

SVM 0.43763 0.087526 0.2 0.121764 

Random 

Forest 0.756757 0.669424 0.529622 0.548218 

Logistic 

Regression 0.439709 0.159163 0.210698 0.162772 

Decision 

Tree 0.655925 0.495532 0.5002 0.496999 

KNN 0.695426 0.523623 0.473308 0.476314 

XGBoost 0.766112 0.663054 0.562092 0.585483 

Bagging 0.758836 0.644396 0.55048 0.566896 

AdaBoost 0.679834 0.526074 0.398987 0.379849 

Table 8 Performance Metrics of Machine Learning Classifiers Using ResNet50  Pre-Trained Model. 
Classifier Accuracy Precision Sensitivity (Recall) F1-Score 

SVM 0.673597 0.281771 0.368366 0.310791 

Random Forest 0.758836 0.696026 0.532697 0.552617 

Logistic Regression 0.682952 0.480082 0.40321 0.377047 

Decision Tree 0.653846 0.494624 0.497411 0.495069 

KNN 0.722453 0.585796 0.527992 0.526723 

XGBoost 0.787942 0.723698 0.601598 0.630141 

Bagging 0.759875 0.697848 0.55941 0.581448 

AdaBoost 0.692308 0.531234 0.436166 0.421877 

 

Table 9. Performance Metrics of Machine Learning Classifiers Using DenseNet121  Pre-Trained Model. 

Classifier Accuracy Precision Sensitivity F1-Score 

SVM 0.817048 0.72719 0.698485 0.708112 

Random Forest 0.808732 0.778227 0.621774 0.653073 

Logistic Regression 0.81185 0.714624 0.68127 0.695396 

Decision Tree 0.751559 0.623244 0.607948 0.614441 
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KNN 0.796258 0.69981 0.623724 0.639344 

XGBoost 0.856549 0.82122 0.741098 0.767784 

Bagging 0.807692 0.755679 0.631019 0.658686 

AdaBoost 0.704782 0.497216 0.447731 0.440925 

Table 10. Performance Metrics of Machine Learning Classifiers Using MobileNetV2 Pre-Trained Model. 

Classifier Accuracy Precision Sensitivity (Recall) F1-Score 

SVM 0.819127 0.718805 0.706868 0.709055 

Random Forest 0.777547 0.722683 0.55464 0.579449 

Logistic Regression 0.801455 0.693751 0.670411 0.679307 

Decision Tree 0.686071 0.536254 0.549865 0.539605 

KNN 0.787942 0.701236 0.61131 0.625482 

XGBoost 0.831601 0.795583 0.664326 0.700846 

Bagging 0.786902 0.717548 0.586956 0.61047 

AdaBoost 0.697505 0.494012 0.466798 0.460719 

Table  11. Performance Metrics of Machine Learning Classifiers Using InceptionV3 Pre-Trained Model. 

Classifier Accuracy Precision Sensitivity (Recall) F1-Score 

SVM 0.846154 0.770963 0.762911 0.7639 

Random Forest 0.776507 0.782681 0.550447 0.586265 

Logistic Regression 0.837838 0.764498 0.73423 0.747865 

Decision Tree 0.637214 0.489683 0.493829 0.491095 

KNN 0.739085 0.630377 0.543386 0.560559 

XGBoost 0.83368 0.814906 0.67963 0.722775 

Bagging 0.796258 0.790088 0.598157 0.64084 

AdaBoost 0.641372 0.468453 0.411696 0.407499 

Table 12. Performance Metrics of Machine Learning Classifiers Using Xception Pre-Trained Model. 

Classifier Accuracy Precision Sensitivity (Recall) F1-Score 

1 0.861746 0.774492 0.764011 0.766436 

2 0.828482 0.816556 0.654163 0.694806 

3 0.834719 0.730863 0.689512 0.7053 

4 0.726611 0.589541 0.592148 0.590648 

5 0.760915 0.612562 0.543719 0.553851 

6 0.871102 0.836623 0.750708 0.782577 

7 0.81185 0.75736 0.636355 0.665453 

8 0.677755 0.504011 0.448132 0.442363 

Table 13 Performance Metrics of Machine Learning Classifiers Using VGG16 Pre-Trained Model. 

Classifier Accuracy Precision Sensitivity (Recall) F1-Score 

SVM 0.744283 0.764121 0.498021 0.489816 

Random Forest 0.818087 0.792944 0.64931 0.681999 

Logistic Regression 0.746362 0.634977 0.509345 0.520961 

Decision Tree 0.727651 0.586645 0.588036 0.586667 

KNN 0.766112 0.661251 0.59862 0.609162 

XGBoost 0.870062 0.822872 0.764068 0.785995 

Bagging 0.81289 0.764053 0.640804 0.66912 

AdaBoost 0.691268 0.552352 0.433573 0.429775 

Table 14. Performance Metrics of Machine Learning Classifiers Using VGG19 Pre-Trained Model. 
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Classifier Accuracy Precision Sensitivity (Recall) F1-Score 

SVM 0.740125 0.762281 0.495038 0.490333 

Random Forest 0.800416 0.757117 0.606718 0.635681 

Logistic Regression 0.74948 0.729165 0.520903 0.540834 

Decision Tree 0.697505 0.548115 0.54779 0.547829 

KNN 0.756757 0.678029 0.575961 0.593623 

XGBoost 0.83368 0.781503 0.682753 0.713401 

Bagging 0.799376 0.745551 0.62241 0.649872 

AdaBoost 0.679834 0.515137 0.436628 0.439241 

Table 15. Performance Metrics of Machine Learning Classifiers Using NASNetMobile Pre-Trained Model. 

Classifier Accuracy Precision Sensitivity (Recall) F1-Score 

SVM 0.820166 0.735867 0.713954 0.718274 

Random Forest 0.797297 0.767603 0.591133 0.620573 

Logistic Regression 0.804574 0.703658 0.666949 0.679842 

Decision Tree 0.686071 0.513725 0.512233 0.512686 

KNN 0.776507 0.670065 0.591569 0.603399 

XGBoost 0.829522 0.771686 0.667106 0.69493 

Bagging 0.805613 0.760873 0.61359 0.643334 

AdaBoost 0.68711 0.500903 0.459207 0.452805 

 

The images of Figure 9 to Figure 13 display 

comparative bar charts showcasing the accuracy of 

ten pre-trained models (EfficientNetV2S, 

EfficientNetB0, ResNet50, DenseNet121, 

MobileNetV2, InceptionV3, Xception, VGG16, 

VGG19, and NASNetMobile) paired with various 

machine learning classifiers. Classifiers include 

SVM, Random Forest, Logistic Regression, 

Decision Tree, KNN, XGBoost, Bagging, and 

AdaBoost. Each chart highlights the accuracy 

performance of classifiers for a specific pre-trained 

model. Ensemble methods such as XGBoost and 

Bagging generally show higher accuracy across 

models, while Decision Tree often underperforms. 

DenseNet121 and Xception with XGBoost are 

among the top-performing combinations, 

emphasizing the synergy between pre-trained 

models and advanced ensemble classifiers. 

C. Results for DR classification using hybrid 

networks and SVM classifier 

Ten different CNN models are employed in the 

feature extraction process. The extracted features 

were concatenated to form a comprehensive feature 

set. Multiple Machine Learning classifiers were 

used in evaluating and subsequently determining 

the best-performing model.  The results are shown 

in table 16. Logistic Regression and XG Boost are 

achieved with an accuracy of 88% and a macro 

average of 81%. But the Voting Classifier and 

SVM outperformed other models, achieving an 

accuracy of 90.02%, with macro averages of 83% 

and 82%, respectively. SVM has emerged as the 

best method because of its superior performance; 

the performance can be attributed to its ability to 

handle high-dimensional data effectively and find 

an optimal hyperplane for classification. 

    

Figure 9. Accuracy Comparison of Classification Models on EfficientNetV2S, EfficientNetB0 

50
55
60
65
70
75

SV
M

R
an

d
o
m
…

Lo
gi
st
ic
…

D
ec
is
io
n
…

K
N

N

X
G

B
o

o
st

B
ag

gi
n

g

A
d

aB
o

o
st

EfficientNetV2S

Accuracy

0
20
40
60
80

100

SV
M

R
an

d
o
m
…

Lo
gi
st
ic
…

D
ec
is
io
n
…

K
N

N

X
G

B
o

o
st

B
ag

gi
n

g

A
d

aB
o

o
st

EfficientNetB0

Accuracy



Karthika Gidijala, Vijaya Kumar Sagenela / IJCESEN 11-2(2025)3341-3357 

 

3354 

 

  

Figure 10. Accuracy Comparison of Classification Models on ResNet50, DenseNet121 

  

Figure 11. Accuracy Comparison of Classification Models on VGG19, MobileNetV2. 

SVM demonstrated its robustness in working with 

complex, concatenated feature sets compared to 

Decision Tree and KNN, which exhibited lower 

accuracies (67% and 68%, respectively). These 

results emphasize SVM's reliability and 

effectiveness for accurate classification, making it a 

preferred choice in the ensemble of evaluated 

classifiers.

 

 

Figure 12. Accuracy Comparison of Classification Models on InceptionV3, Xception. 
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Figure 13. Accuracy Comparison of Classification Models on VGG16, NASNetMobile. 

 

The table 17 compares the accuracy of various 

methods with the proposed hybrid method. Among 

the existing approaches, the highest accuracy is 

achieved by Method 34 with 87%, closely followed 

by Methods 20 and 33 with 84% and 84.5% 

accuracy, respectively. Method 15 records the 

lowest accuracy at 63.4%. The proposed hybrid 

method outperforms all others, achieving an 

impressive accuracy of 90.02%, indicating 

significant improvement and validating its 

robustness in addressing the problem. This 

highlights the effectiveness of the proposed hybrid 

approach in surpassing the limitations of traditional 

methods. 

 
Table 16.  Performance Comparison of Machine 

Learning Classifiers Using Concatenated CNN Features. 

Method 

  

Accuracy     Macro avg  

Logistic 

Regression 88% 81 

Decision Tree 67% 54 

Random Forest 86% 77 

Gradient Boosting 82% 71 

KNN 68% 63 

XGBoost  88% 81 

Voting Classifier 90% 83 

Stacking 

Classifier 86% 76 

SVM 90.02% 82 

 

 
Figure 14. Performance Comparison of Hybrid CNN 

and ML Classifiers for DR Classification. 

 
Table 17 Accuracy Comparison of Existing Methods 

and Proposed Hybrid Method. 

Method Accuracy 

[12] 74.32% 

[13] 75% 

[20] 84% 

[33] 84.5% 

[34] 87% 

[15] 63.4% 

[14] 78% 

Proposed hybrid method 90.02% 

 

4. Conclusion 

 
With the aim of providing new in-house data, this 

study analyzes DR photos from IDRid, Kaggle, and 

the American Eye Hospital in Hyderabad. 

Following it, a hybrid idea for the categorization of 

the DR images using support vector machines and 

pre-trained CNN algorithms is presented. Several 

pre-trained networks are concatenated to create a 

hybrid model. The SVM classifier, which had the 

maximum accuracy of 90.02%, is fed the features 

that were derived from the hybrid model. Future 

research can test the suggested hybrid networks 

using various classifiers, optimizers, batch sizes, 

and epochs. Before being fed into the networks, 

pre-processing steps can be added to the input 

pipeline. 
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