
 

 
 

Copyright © IJCESEN 

 

International Journal of Computational and Experimental 

Science and ENgineering 

(IJCESEN) 
 

Vol. 11-No.3 (2025) pp. 4253-4261 
http://www.ijcesen.com 

ISSN: 2149-9144 

 Research Article  
 

 

Exploiting Optimized Depthwise Separable Convolutions for Traffic Signal 

Recognition 
 

V. Nisha1*, A.Thilaka2, T. Nathiya3, K. Kanagalakshmi4 

 
1Assistant Professor, Department of Computer Applications, Faculty of Science and Humanities, SRMIST, 

Kattankulathur, Chennai. 
* Corresponding Author Email: nishav@srmist.edu.in,- ORCID: 0000-0003-1781-6201 

 

2Assistant Professor, Department of Computer Applications, Faculty of Science and Humanities, SRMIST, 

Kattankulathur, Chennai. 

Email: thilakaa@srmist.edu.in - ORCID: 0009-0008-7196-0267   

 
3Assistant Professor, Department of Computer Science, Faculty of Science and Humanities, SRMIST, Kattankulathur, 

Chennai 

Email: nathiyat@srmist.edu.in - ORCID: 0000-0001-9344-2884 

   
4Associate Professor and Head Department of Computer Applications, SRMIST, Tiruchirappalli. 

Email: kkanagalakshmi@gmail.com - ORCID: 0009-0006-1909-2840 

 
Article Info: 

 
DOI: 10.22399/ijcesen.1812 

Received : 21 January 2025 

Accepted : 12 April 2025 

 

Keywords  

 
Depthwise Separable Convolutions, 

Convolutional Neural Networks, 

depthwise convolution,  

pointwise convolutions,  

autonomous vehicles 

Abstract:  
 

Traffic signal recognition using Optimized Depthwise Separable Convolutions 

(ODSCs) is more proficient than established Convolutional Neural Networks (CNNs) 

for ongoing projects such as self-drive car and intelligent transportation systems. 

Efficiency of Optimized Depthwise Separable Convolutions is improved in two modest 

steps are depthwise convolutions and pointwise convolutions, these operation uses 

effectively utilize the memory, reduces the processing time and supports scalability. 

Prediction of traffic sign using ODSCs improves accuracy rate compare to CNNs and 

also increases the speed of the computations, consumption of energy is less and reduced 

model size. ODSCs are well suited for device with minimum resource such as 

embedded system in transportation, intelligent city infrastructures to recognition of 

traffic signals 

 

1. Introduction 
 

The growth of self-directed vehicles and driver-

support systems trusts profoundly on detecting 

accuracy and traffic signs classifications, such as 

limits of speed, signs for warning, and monitoring 

indicators[1]. Self- Directed Vehicle should take 

decision effectively and accurately.  Standard 

Convolutional Neural Networks (CNNs) in deep 

learning, extract the features of the image 

automatically and examine the data then it will 

identify the traffic signs. But in mobile phones, 

embedded systems, IoT devices and setups in edge 

computing, CNN model size is bit larger.  Light 

weight model is introduced to overhaul the standard 

CNN by utilizing the memory efficiently, fast 

computation of task, less energy consumption and 

improved accuracy rate[2]. Light weight models are 

well suited for device with minimum resource such 

as embedded system in transportation, intelligent 

city infrastructures to recognition of traffic signals. 

Now a days real time elucidations are increasing in 

the area such as traffic sign recognition, detection 

of objects, self- drive cars. These application 

demands fast processing, low computation time, 

less data volumes, limited power consumption. 

Light weight models optimize and incorporate the 

requirements such as  

• Reduced Model Size: By using fewer 

parameters, lightweight models use less memory, 

supporting quicker loading and execution. This is 

particularly advantageous for devices with reserved 

storage, such as smartphones or edge devices. 

• Lower Computational Complexity: These 

models are designed to require minimal processing 

power, allowing them to perform efficiently on 
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low-capability CPUs or GPUs, making them 

suitable for low-power environments[3]. 

• Energy Efficiency: Lightweight models are 

optimized to reduce power consumption, critical for 

battery-operated systems like drones and 

autonomous vehicles, ensuring prolonged operation 

without frequent recharging. 

MobiNet, EfficientNet and SqueezeNet uses model 

pruning technique, quantization technique, efficient 

and effective architecture development technique 

play vital role in creating Light weight models. 

These approaches help minimalize computational 

loads and model size without a substantial drop in 

enactment [4]. 

The lightweight models and standard deep learning 

models are mainly differ in their efficiency and 

complexity. The proposed Optimized Depthwise 

Separable Convolutions are well-matched for 

applications like traffic signal recognition (TSR) 

real-time application because actions are taken 

quickly when compare to standard CNN. This 

efficacy of the model is determined by small size of 

the model, making ODSCs ultimate for deployment 

on limited resource-constrained edge and IoT 

devices. Moreover, the consumption of power is 

less owing to lower computational complexity and 

low memory requirements makes ODSCs worth. 

The advantages of Optimized Depth wise Separable 

Convolutions (ODSCs) are faster and more 

accurate prediction of traffic sign detection in real 

time application, ODSCs can be easily  deployed in 

embedded and IoT devices, can achieve the 

advantages of Scalability. 

 

2. Review of Literature 
 

Lin, J., et al.[5] designed highly efficient 

architecture is MicronNet is used for traffic sign 

recognition in Real time systems and it is suitable 

for embedded and IoT devices. This model size is 

approximately 1MB and with around 510,000 

parameters. Using GTSRB dataset evaluated 

accuracy of 98.9% and fast inference time of 32.19 

ms. 

One of the recent innovation in neural networks 

(NN) is Capsule Networks (CN) proposed by Khan, 

F., et al. [6] that the system can  captures data 

related to space  and also used to recognise traffic 

sign. Latest studies using capsule networks for 

Traffic signal recognition proved that it gives high 

accuracy for real time traffic signal detection. 

Zhang, H., et al. [7] proposed an approach to reduce 

the model size and complexity of computation by 

using binary weights in neural network is called as 

Binary Neural Networks. A study proved that 

applying Binary Neural Network on Traffic Sign 

Recognition (TSR)  has shown improved accuracy, 

reduced size of the model under two million 

parameters and moreover it is suitable for devices 

with limited resources.  

Wang, L., et al. [8] contributed PP-LCNet is one of 

the lightweight architecture, established for real-

time system for recognition and detection of 

metropolis traffic signs. This model attain 

extraordinary performance and low expectancy. It 

is appropriate for automobile vision systems, with 

more accuracy and speed.  

Mingwin, X., et al. [9] proposed Evolutionary 

algorithm with Transformer architecture is used to 

design Pyramid EATFormer model to reduce 

computation complexity. Pyramid EATFormer 

model proved enhanced accuracy on familiar 

Traffic Sign Recognition datasets like GTSRB and 

BelgiumTS[10]. 

Li et.al. proposed faster R-CNN model using multi 

scale feature fusion and prime sample attention. To 

extract the features HR-Net (High Resolution 

Network) is used. For evaluating the model 

TT100K dataset is used. R-CNN model are 

constructed with lower complexity and achieves 

high accuracy and robustness [11][12].  

 Zhang et al. (2022) established a deep learning-

based traffic sign recognition method that exactly 

targets the recognition and cataloguing of rounded 

traffic signs. This model considerably increases 

driving safety by precisely identifying circular 

signs even in puzzling conditions like blocking and 

changing lighting [13]. 

Toshniwal et al. (2024) offered an optimized 

recognition and classification method using 

convolutional neural networks on the GTSRB 

(German Traffic Sign Recognition Benchmark). 

Method attained an accuracy of approximately 

96%, showcasing the efficiency of innovative 

localization strategies in improving traffic sign 

recognition [14]. 

Sruthy et. al. Combines edge detection methods 

with deep learning designs improves the 

correctness of traffic sign recognition systems. This 

blending permits for improved feature extraction 

and better detection rates [15]. 

Mingwin et. al. Vision Transformers suggest a 

promising another traditional convolutional neural 

networks for traffic sign detection, taking global 

situation and refining classification 

accurateness[16]. 

Pavlitska  et. al. analysis different algorithm for the 

real-time traffic light detection for driverless  

driving, however encounters persevere owing to 

changing lighting settings and obstructions. This 

complete survey of CNN (convolutional neural 

network) based techniques highlights the essential 

for strong replicas that can handgrip the 

inconsistency [17]. 
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Xu et. al. suggest deep learning technique to detect 

and classify circular signs in traffic sign detection 

system. This technique involves grayscale 

translation, Gaussian filtering, and CNNs for 

feature mining and cataloguing, for attaining the 

expected accuracy [18]. 

Chen et. al. study showcases the efficiency of 

CNNs in recognizing and cataloguing different 

traffic signs by training on various datasets, 

representing robustness against deviations in look 

and environmental surroundings [19]. 

Sharma et. al. reviewed different traffic sign 

recognition algorithms over the past ten years, 

emphasising the changeover from outmoded 

algorithms to contemporary deep learning 

techniques [20]. 

Kumar et. at. Introduced a dual-module method for 

detection and classification traffic signs, warranting 

great performance appropriate for entrenched 

applications [21]. 

Singh et. al. developed a novel deep neural network 

architecture that achieves recognition and 

cataloguing of traffic signboards concurrently using 

radical CNNs like AlexNet, VGG-19, ResNet-50, 

and EfficientNet v2 [22]. 

Lee et. al. survey explores CNN (convolution 

neural network) constructed traffic light detection 

techniques, categorized into general sign detectors, 

multi-stage fusion methods, and task-specific 

single-stage techniques [23]. 

Patel et. al. proposed an enhanced CNN method for 

traffic sign recognition and cataloguing, attaining 

approximately 96% correctness on the GTRSB 

dataset [24]. 

 Zhao et. al. have adapted the Xception building 

with DSCs for edge devices, plummeting 

parameters, memory consumption, and 

computational workload. This optimization 

improves real-time traffic signal detection in 

resource-constrained surroundings [25]. 

Chen et. al. integrates of DSCs with fusion 

attention segments increases feature extraction in 

compound parts by improving the network's 

emphasis on precarious features, thus increasing 

accuracy of the traffic signal recognition [26]. 

Haase et. al.proposed  BSConv technique, an 

progression over traditional DSCs, representing 

intra-kernel associations and important to better 

feature extraction and traffic recognition,  

performance in various traffic signal setups [27]. 

Zhang et.al. proposed energy-efficient DSC 

architectures to reduce computational complication 

and energy intake, enabling the deployment of 

traffic signal detection in embedded systems [28]. 

Chollet et. al. designed a  Xception model that takes 

Inception modules as an transitional step between 

regular convolutions in CNN and DSCs. This 

architecture substitutes Inception modules with 

DSCs, improving performance in traffic signal 

image cataloguing  [29]. 

Li, Wei, et al.  proposed C2S-RoadNet model 

associates DSCs with lightweight asymmetric self-

attention devices in an encoder-decoder 

construction. This enterprise improves feature 

extraction competences, prominent to more 

complete road evidence extraction from remote 

sensing imagery [30]. 

Lee, Der-Hau et. al. developed DSUNet 

architecture pays DSCs within a UNet structure for 

end-to-end track recognirtion and path forecast. 

This lightweight model is enhanced for real-time 

self driving applications, contributions abridged 

model size and faster implications [31]. 

 

3. Optimized Depthwise Convolution 

Network 
 

The Pipeline of ODSCs for traffic signal 

recognition (TSR) architecture includes Input Pre-

processing, Feature Extraction Layer, Classification 

Module and Output Layer. 

1. Input Pre-processing: 
Capture the input image from camera or video 

frame or from TSR dataset. Resize the images to 

fixed size and resolution and then convert the 

image to one color model such as RGB model or 

HSV model based on the lightning effects 

2. Feature Extraction Layer: 
Standard layers are replaced with Optimized DSCs 

to capture each channel features proficiently. In the 

Optimized DSCs, the first sublayer is depthwise 

convolutional layer extract channel-wise features. 

Then second sublayer is pointwise convolutional 

layer merges the collected features form each 

channel. This two sublayer increases the efficiency 

and reduces the computational complexity and also 

decrease the number of parameters when compared 

with standard CNN convolution layer.  

Alternate for standard CNN is Optimized 

Depthwise Separable Convolutions (ODSCs) for 

improved efficiency rate, reduce complexity, and 

usage of memory. In Standard CNN, for all input 

channels need to set filters, these action may leads 

to high computation complexity and memory 

utilization.  

Standard CNN formula for number of operation 

(NO) is product of height (PH) and width (PW) of 

the input features, input channels numbers(Cin),  

output channels numbers (Cout),size of the kernel in 

matrix (K x K). 

NO=PH x PW x Cin x Cout x K x K 

Optimized Depthwise Separable Convolutions 

(ODSCs) split this procedure into two different 

steps: depthwise convolution and pointwise 
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convolution. In depthwise convolution, one filter is 

applied individualistically to every input channels, 

concentrating on features within channels. This 

method confirms that the spatial relationships are 

captured without collaborating data between 

channels.  

In Depthwise Convolution (D) formula is framed in 

each kernel applies convolution independently to a 

single channel. 

D = PH x PW x Cin x K x K 

The second action is, pointwise convolution, uses 

a one cross one (1 x 1) filter to combine the 

depthwise outputs from each channel into new 

feature maps. This separation significantly reduces 

the number of operations necessary, reduce the 

computational cost from the standard method 

In Pointwise Convolution(P) formula, combines 

across all channels. 

P = PH x PW x Cin x Cout 

Sum of Depthwise Convolution (D) and Pointwise 

Convolution(P) and form total operation (T).  

T = (PH x PW x Cin x K x K) + ( PH x PW x Cin x 

Cout) 

To improve efficiency, the reduction factor(R) is 

R =  1 𝐶𝑜𝑢𝑡
⁄    +    1

𝐾2⁄  

The size of the output feature map after a 

Convolution determined by 

 𝐻𝑜𝑢𝑡=
𝑃𝐻𝑖𝑛−𝐾+2𝑃 

𝑆
 +1   and 𝑊𝑜𝑢𝑡=

𝑊𝑖𝑛−𝐾+2𝑝 

𝑆
+ 1     

 

3. Classification Module: 
Global Average Pooling (GAP) Layer or Fully 

Connected (FC) [10] layers to convert the collected 

features into prediction of class. A universal 

method is global average pooling, to reduce the 

each features into one value by averaging various 

dimensions of the feature maps are averaged. This 

action helps to recollect the most significant 

features while dropping the dimensionality of the 

value [11]. Fully connected layers also used 

instead of Global Average Pooling, it will take the 

compressed features and pass the features through 

fully connected (dense) layers to predict the output. 

These dense layers allows the model to study the 

complexity of the decision borders. Intermediate 

Levels is included to identify the middle level 

features like traffic sign textures. 

4. Output Layer: 
Output possibilities for traffic signal prediction 

class may contain stop, go, ready. Softmax 

activation function, is used to change the outputs 

obtained from the final classification layer are 

converted into one value by sum the probabilities 

values in final layer. The output of the model 

predict the correct traffic signal by matching the 

class value with the highest probability value.  

Softmap converts raw scores into probabilities: 

𝑃(𝑦𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝑐
𝑗=1

 

Zi:  raw value for ith class 

C: Total classes 

The block diagram of Optimized Depthwise 

Convolution Network operations is shown below in 

the given Figure 1.  

 

4. Fine Tuning in Optimized DSCs 
 

Hyper parameters are optimized by adjusting 

weights, learning rates and batch size to improve 

the performance and efficiency of the model. 

Sometimes high learning rate overwrites some of 

the useful features to avoid this use minimized 

learning rate between 10-4 and 10-5. After some 

epoch in training, reduce the learning rate or 

gradually reduce the rate of learning. Due to 

memory constraint IoT devices or other real time 

devices, reduction of batch size is important.  

Over fitting of data reduces the performance ratio. 

Sometimes over fitting happens while fine tuning 

the hyper parameters to avoid this regularization 

technique is used. Drop out is added in the 

classification head. Weight decay is used to handle 

the large weights and to improve the generalization. 

To increase the dataset size data augmentation is 

used. 

Optimized DSC’s may have shallow network. Fine 

tuning shallow layers by freezing and unfreezing 

task to feature specific network layers tailed by task 

specific network layer. To retain the textures and 

edges feature freeze the layers. Higher layers are 

smoothly unfreeze to recognize the traffic sign. 

Remove the redundant network layers by pruning 

method. To deploy the model efficiently and to 

produce result with high accuracy, Quantization 

technique is used. In optimized DSC’s Dynamic 

Range Quantization is applied to convert 32 bits 

data to 8 bits integer. 

 

5. Result Analysis 
 

To develop, implement, train and test for traffic 

sign recognition using Depthwise Separable 

Convolutions, uses a dataset like the GTSRB  

(German Traffic Sign Recognition Benchmark), 

which encompasses several traffic sign images. 

Optimized Depthwise Separable Convolutions is 

used to build and train a neural network (NN) by 

TensorFlow/Keras. 

Optimized Depthwise Separable Convolutions 

(ODSCs) results are compared with standard 
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Convolutions Neural Network, both models are 

evaluated through numerous key metrics namely: 

1. Accuracy: measures the overall accuracy 

of classification of the model. When 

comparing ODSCs and Standard CNN both 

achieve same accuracy but with minor 

drops. 

2. Model Size: memory required for 

deploying the model. ODSC models are 

smaller and making them appropriate for 

embedded and IoT devices . 

3. Inference Speed: Processing time for 

predicting a single image. DCS take less 

parameters and computation time  

4. Computational Cost: Calculate the 

complexity by using number of floating-

point operations (FLOPs) used. 

5. Energy Efficiency: Power consumption 

used by the embedded system. DCS 

consumes less energy 

6. Computational Efficiency: The 

decomposition of convolutions into 

depthwise and  

Metrics Comparison 
 

The outcomes display that the ODSCs model is 

consistent for traffic signal recognition. ODSC can 

be efficient to manage intellectual transportation 

that helps to achieve the effective and 

appropriateness of intellectual traffic supervision. 

Diverse Light weight model for precision rates of 

Precision value, Recall value and F1-score value of 

each group in the GTSRB dataset. Optimized 

Depthwise Separable Convolution (ODSC) model 

offers improved tariffs compare to another other 

models. 

 

Stop signal detection for various algorithm is 

depicted in table 2. Diagrammatic representation of 

comparison of different algorithm is shown in 

figure 2. Amongst them, the ODSC model views out 

with 0.94 precision and with 0.93 F1-Score, shows 

extraordinary accuracy rate and well-proportioned 

performance in recognising stop signals. The YLA 

is a close challenger, attaining a precision of 0.89 

and the recall of 0.93, which shows efficient 

detecting of stop signals. Both the Compact CNN 

Architecture and CN show persistent and reliable 

results, holding balanced precision, recall, and F1-

Scores around 0.9. Similarly, the Binarized Neural 
Networks (BNN) model records precision of 0.85 

and F1-Score of 0.87, gleaming a small concession 

between precision and recall but still bringing 

effective stop signal detection. Overall, the findings 

suggest that the Optimized Depthwise Separable 

Convolution model is the most precise and reliable 

choice for identifying stop signals. Table 3 

compares the performance metrics of different 

models for ready signal detection. The Optimized 

Depthwise Separable Convolution model’s 

precision value is 0.91, recall value is 0.94, and F1-

Score value is 0.92, indicating outstanding accuracy 

and stable performance in recognising ready 

signals. The YOLO-based Lightweight Architecture 

also displays good precision value and F1-Score 

value of 0.9, representing reliable and effective 

recognition. The Compact CNN Architecture and 

BNN models carry compact performance with F1-

Scores value of 0.87 and 0.86, respectively, 

successfully balancing precision value and recall 

value. The CN model has slightly inferior 

performance, with an F1-Score value of 0.84, 

representing acceptable results. Generally, these 

results highlight the Optimized Depthwise 

Separable Convolution (ODSC) model as the most 

accurate and trustworthy choice for ready signal 

recognition. Table 4 summarizes the performance 

metrics of different models for go signal detection. 

The Optimized Depthwise Separable Convolution 

(ODSC) model proves the peak efficacy, attaining 

precision value of 0.94, recall value of 0.91, and 

F1-Score value of 0.94, shimmering remarkable 

accuracy and balanced performance. The YOLO-

based Lightweight Architecture tracks with a 

precision value of 0.89, recall value of 0.82, and 

F1-Score value of 0.87, showing consistent 

detection and good stability. The Compact CNN 

Architecture also executes well, with an F1-Score 

value of 0.84, upholding a rational stability between 

precision value (0.89) and recall value (0.8). CN 

model spectacles slightly inferior metrics, with an 

F1-Score value of 0.81. BNN model archives low 

F1-Score value (0.79), demonstrating a trade-off 

between precision value (0.84) and recall value 

(0.75). Generally, the results highlight the 

Optimized Depthwise Separable Convolution 

model achieves high accuratcy and consistent for 

detecting go signals. 

 

Table 1. Comparison of Lightweight Models and Traditional Deep Learning Models 

Feature Lightweight Models Traditional Deep Learning Models 

Model Size and 

Computational 

Complexity 

Model size is smaller, with lesser factors 

and the requirement of the memory is 

less. The Complexity of computation is 

low because uses less operations 

Model size is larger, with more factors, and the 

requirement of the memory is larger. The 

Complexity of computation is high because of 

complex architectures. 
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Inference Time, 

Energy 

Consumption, and 

Accuracy 

Model is optimized for faster prediction. 

It takes less power making it opt for 

battery-enabled devices. It gives 

accuracy in terms of efficiency near to 

deep learning model 

Inference times are slower due to the deeper and 

more complex networks. But accuracy is good. 

Need more power consumption 

Hardware 

Requirements , and 

Deployment 

This model runs and deploy efficiently 

in limited CPUs/GPUs devices.  

Example: mobile devices and IoT 

devices. Hence it is opted for real time 

systems  

This model requires high performance GPUs and 

TPUs to achieve more accuracy. Preeminent 

model with lavish computational resources, 

Example: cloud or server environments. Hence it 

is less opt for real time systems 

Scalability, and  

Optimization 

Techniques 

Scalability and flexibility is less in this 

model. To reduce the size and 

complexity of the model, pruning, 

quantization, and distillation technique 

is used. 

Scalability is high in this model because of deeper 

and complex architecture.  

 

 

 

Figure 1. Optimized Depthwise Convolution Network operations 

Table 2. Comparison of Metrics between Standard CNN and Depthwise Separable CNN 

Metric Standard CNN Depthwise Separable CNN 

Test Accuracy 0.96 0.95 

Model Size Approximately  15 MB Approximately  3 MB 

Inference Speed Approximately  30 ms per image Approximately 10 ms per image 

Computational Cost High Significantly lower 

   

 

 

Table 3. Stop Signal Detection 

Model Precision Recall F1-Score 

Compact CNN 

Architecture 
0.88 0.92 0.9 

Capsule 

Networks 
0.88 0.9 0.89 

Binarized Neural 

Networks  
0.85 0.89 0.87 

YOLO-based 

Lightweight 

Architecture 

0.89 0.93 0.91 

Optimized 

Depthwise 

Separable 

Convolution 

0.94 0.92 0.93 
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Figure 2. Comparison of Stop Signal Detection 

 

Table 4. Ready Signal Detection 

Model Precision Recall F1-Score 

Compact CNN 

Architecture 
0.85 0.89 0.87 

Capsule Networks 0.82 0.86 0.84 

Binarized Neural 

Networks  
0.85 0.88 0.86 

YOLO-based 

Lightweight 

Architecture 

0.9 0.91 0.9 

Optimized 

Depthwise Separable 

Convolution 

0.91 0.94 0.92 

 

 

Figure 3. Comparison of Ready Signal Detection 

Table 5. Go Signal Detection 

Model Precision Recall 
F1-

Score 

Compact CNN 

Architecture 
0.89 0.8 0.84 

0,8
0,82
0,84
0,86
0,88

0,9
0,92
0,94
0,96

Precision Recall F1-Score

0,76
0,78

0,8
0,82
0,84
0,86
0,88

0,9
0,92
0,94
0,96

Precision Recall F1-Score
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Capsule Networks 0.88 0.75 0.81 

Binarized Neural 

Networks  
0.84 0.75 0.79 

YOLO-based 

Lightweight 

Architecture 

0.89 0.82 0.87 

Optimized Depthwise 

Separable Convolution 
0.94 0.91 0.94 

 

 

Figure 3. Comparison of Go Signal Detection 

 

6. Conclusions 

 
Optimized Depthwise Separable Convolutions 

(ODSCs) provide an effective method for traffic 

signal recognition, predominantly in situations 

where real-time act and resource limitations are 

perilous. These models provide similar accuracy 

levels to standard CNNs however considerably 

reducing computational complexity, inference time, 

and model size. Moreover, their energy efficiency 

creates them suitable for deployment on IoT and 

embedded devices, likely in vehicles or mobile 

processors. This efficacy, combined with 

scalability, makes ODSCs a useful choice for 

contemporary intellectual transportation systems. 
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