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Abstract:  
 

Remote driving system development commonly known as intelligent transportation 

systems present a crucial field of study where designers focus on autonomous and 

intelligent vehicle security. The current obstacle avoidance approaches encounter 

difficulties while handling unpredictable and changing road situations which results in 

doubtful decisions along with critical safety problems. An Improved Fuzzy Inference-

Based Emergency Obstacle Avoidance Control System should be applied to intelligent 

vehicles according to this research to overcome current obstacles. Fuzzy logic 

operations in the proposed system manage uncertain data alongside an optimized 

control system which adapts automatically to environmental changes for enhancing 

both safety and efficiency of vehicle avoidance processes. The system detects obstacles 

and evaluates possible collision dangers through the integration of vision-perception 

sensors together with ultrasonic detectors. The fuzzy inference system uses FIS 

procedure to interpret ambiguous information from which it produces autonomous 

system commands to initiate emergency measures. The proposed system went through 

complete simulation testing as well as direct field experiments to establish its operating 

effectiveness. This shows that the obstacle detection accuracy improves and the 

emergency response and vehicle trajectory planning time reduce by using the improved 

fuzzy inference-based approach. The implemented system delivers stronger stability 

performance and accelerates response times as well as minimizes overshoot compared 

to traditional obstacle avoidance systems when operating at high speeds. 

 

 

1. Introduction 
 

AVs, also known as autonomous vehicles, will 

much devise the road safety, traffic efficiency and 

vehicle energy consumption, as vehicles can be 

allowed to drive without human instructions. Since 

AI and sensor technology have been mature, AVs 

are the research and development target. Yet these 

are quite a few real-world traffic scenarios [1], so 

real world driving is incredibly unpredictable, and 

therefore a very difficult problem to solve on real-

time. The problem of emergency obstacle 

avoidance in intelligent transportation is a high 

importance problem in which vehicles must swiftly 

uncover attacks and fulfil protected maneuvers to 

prevent collisions [2]. The rule base system and 

supervised machine learning approach do not 

provide adaptive real time solution in dynamic 

environment [3]. FLC is a good choice when 

emergency obstacle avoidance in intelligent 

vehicles using an unknown and imprecise data is 

required [4]. 

A well-co-ordinated system of perception, decision 

making and control is required for emergency 

obstacle avoidance. Likely, Sensor fusion LiDAR, 

radar and cameras are used to integrate the 

perception module in order detect obstacles, and the 

decision-making process will choose the optimal 

path considering the vehicle speed [5], obstacles 

distance and road conditions. Path planning has 

been accomplished through many conventional 
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methods such as Artificial Potential Field (APF) 

and Rapidly-exploring Random Tree (RRT) [6]. 

The limitation of the use of APF which suffers from 

the local minima problem. Since the high 

dimensional space is dealt with efficiently by RRT, 

it may also generate a non-smooth path, but it has 

to be extracted through post processing [7]. To 

meet these challenges, fuzzy inference system (FIS) 

is more adaptable and computationally efficient in 

order to produce real time obstacle avoidance 

through linguistic rule-based decision making [8]. 

Despite their effectiveness, traditional and learning 

based methods are often not real time adaptable and 

not very sensitive to computational time and 

decision robustness in emergency situations. 

However, rule-based systems do not have enough 

flexibility [9] when there are unforeseen situations 

and reinforcement-based learning needs extensive 

training dataset and may not guarantee an optimal 

solutions under all situations. The proposed 

Improved Fuzzy Inference-Based Emergency 

Obstacle Avoidance Control System enhances AV 

safety [10] compared to generic approaches for 

dealing with emergency obstacles on the road by 

using optimally constructed fuzzy logic rules, 

sensor fusion, and real time inference. In contrast to 

classical methods, the purpose of this system is for 

dynamic decision making and deciding the rule of 

motion that is adjusted by the dynamic sensor 

inputs, so that the automobile can manipulate better 

and smoother [11], safer, and more reliable 

manoeuvres. The proposed method is validated 

through extensive simulation and validation, and 

demonstrate in a clear manner that it has better 

reaction time, path stability, and collision 

avoidance than conventional approaches, which are 

attend a noticeable step towards safe and intelligent 

autonomous navigation. 

 

2. Literature Survey 

 
Since the rapid advancement of autonomous 

vehicle technologies, ongoing research on 

intelligent obstacle avoidance systems have been 

greatly enhanced for the purpose of its safety and 

navigation efficiency. However, there are several 

approaches that may be applied to addressing 

challenges introduced by dynamic driving 

environments, such as fuzzy logic, reinforcement 

learning, predictive control as well as other data 

driven approaches. The recent studies have been 

focusing on the evaluation of sensor fusion, 

trajectory prediction and deep learning models for 

improving real-time decision making and maneuver 

execution. But these methods require a high 

computation amount, require a heavy use of 

sensors, and need a precise calibration. In this 

literature survey, the methodologies, advantages 

and drawbacks of the aforementioned emergency 

obstacle avoidance strategies contributions are 

overviewed. 

X. Wu et al. [12] presented an intelligent vehicle 

emergency obstacle avoidance strategy, which 

included driver-environment risk evaluation based 

on fuzzy logic, reinforcement learning, sensor 

fusion. Obstacles were assessed, risks were 

predicted and adaptive manoeuvre execution was 

performed in order to improve real time decision-

making. Being dynamics and external factors 

aware, it brought robust adaptability and safety. 

Although, it had the problem of computational 

complexity, sensor dependency, and fine-tuned 

fuzzy logic rules. However, although these 

limitations limit the study, they have contributed 

greatly to collision avoidance strategies for 

autonomous vehicles. 

Q. Wang et al., [13] presented an intelligent vehicle 

obstacle avoidance strategy based on fuzzy control 

theory is used to process uncertain information. 

This was done using an approach of combining 

visual sensing and ultrasonic detection equipment 

in the plan avoidance routes dynamically. The 

improvements made to the vehicle’s ability to see 

and respond to obstacles improved driving safety. It 

had the advantage of higher obstacle recognition 

accuracy in real time and time adaptability. 

Nevertheless, limitations presented themselves in 

having to integrate multiple sensor systems as well 

as precise calibration for maintenance of system 

reliability. This strategy in general, helped in the 

advancement of intelligent vehicle safety 

technologies. 

Bren et al., [14] suggested an autonomous 

navigation method based on the data driven vehicle 

intent estimation and trajectory prediction using 

spatiotemporal models was suggested. It improved 

the prediction accuracy in dynamic traffic 

conditions by developing more responsive 

predictions that are used to make safer and more 

efficient decisions for autonomous vehicles on 

predicting the nearby traffic movements. However, 

real time implementation was cumbersome due to 

high data requirements and large computational 

power. However, it wasn’t perfect and had these 

shortcomings, but because of this potential to help 

traffic safety and intelligent transportation systems 

it was a thrilling solution for next generation 

autonomous driving. 

M. Xu et al., [15] designed a Constrained Model 

Predictive Control (MPC), together with an 

Improved Artificial Potential Field (APF) 

technique, in obstacle avoidance strategy in fast 

moving vehicles. The strategy also outperformed 

real-time collision avoidance based on MPC of 
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vehicle trajectories in constraints with stability and 

physical constraint following guarantees. The 

obstacles in the enhanced APF method were 

dynamically modeled and guided vehicles along 

safe routes. The system was however improved in 

terms of high speed operation through enhanced 

predictive and adaptive decision making, however, 

problems with high computation rates and precise 

environment modeling still existed. Nevertheless, 

overall, the strategy vastly increased the 

performance and safety of autonomous vehicles. 

Qian et al. [16] developed a strategy to improve 

evasive maneuver safety and comfort, Deep 

Reinforcement Learning (DRL) based panic 

obstacle avoidance planning strategy. Based on 

longitudinal distance and lateral waypoint models 

reflecting comfort deceleration and stability, the 

proposed research developed a graded hazard index 

to assess the relative severity of the potential 

hazards. Path stability and feasibility were ensured 

by means of a fuzzy PID controller. In time-varying 

cases, to solve incomplete observations, the DRL 

model used Deep Q-Network (DQN) with LSTM 

layer to input incomplete observation to improve 

algorithm efficiency. The results of simulation 

showed that the proposed method greatly reduce the 

collision rates while still meeting comfort demand, 

surpassing conventional DRL techniques in the 

aspects of safety and efficiency. The problem 

formulation is presented in table 1. 
 

Table 1. Problem formulation 

Author(s) Techniques Involved Advantages Disadvantages 

Xiaodong Wu et 

al., [12] 

Fuzzy logic, reinforcement 

learning, sensor fusion 

Real-time decisions, improved 

safety 

High computation, sensor 

dependency 

Qianqian Wang et 

al., [13] 

Fuzzy control, visual 

sensing, ultrasonic 

detection 

Accurate recognition, real-time 

adaptability 

Complex integration, 

calibration needed 

Bingtao Ren et al., 

[14] 

Data-driven, 

spatiotemporal models 

High prediction accuracy, better 

navigation 

Large datasets, high 

computation 

Mingyang Xu et 

al., [15] 

MPC, Improved APF Stability, adaptive decision-

making 

High computation, precise 

modelling 

Yubin Qian et al., 

[16] 

DRL, DQN, LSTM, fuzzy 

PID 
 Reduced collisionsimproved 

efficiency 

Data-intensive, 

computationally heavy 

 

Although considerable effort has been done on 

obstacle avoidance strategies, existing methods are 

still facing high computational burdens, hardware 

dependence, and lack of flexibility to different 

dynamic environments. Fuzzy logic as well as the 

model based predictive control approach fail in 

making real time response and decision accuracy on 

unpredictable traffic [17]. Methods based on data 

driven and reinforcement learning are in general 

more predictive and admissible but they require 

large amounts of training data and computational 

resources. 

To tackle these limitations, the proposed system 

employs an upgraded fuzzy inference-based control 

mechanism. It combines the advantages of decision 

making under uncertainty with the real time 

adaptation. Additionally, the computational 

efficiency and collision avoidance is achieved in 

intelligent vehicles [18]. 

 

3. Proposed System Architecture 
 

Intelligent automobiles slowly making their way on 

the public spotlight with the science and technology 

advancement. Since people are interested in 

intelligent vehicles, the edition of intelligent 

vehicles is a serious issue, as the obstacle avoidance 

technique of traditional intelligent vehicles does not 

clearly recognize fuzzy data. This research presents 

an intelligent vehicle obstacle avoidance system 

using fuzzy control theory and an obstacle 

avoidance technique as an obstacle avoidance 

system for smart cars uses the sensors to detect the 

surroundings then send out command according to 

the data they collect. 

 

3.1. Sensor related obstacle avoidance 

technology 

 
Each smart automobile typically has ultrasonic, 

visual and infrared sensors for signal detection 

because they are meant to detect signals that can 

identify objects connected to the wavelength of 

infrared light. It can determine how far away 

vehicles and barriers are within its range feature. In 

the first case, the transmitter of the infrared sensor 

ejects the infrared light wavelength. When the 

infrared light passes through an obstruction, the 



Xunjie Luo, Shaowei YI / IJCESEN 11-2(2025)2757-2768 

 

2760 

 

infrared light bounces back. Most ophthalmologists 

detect reflected infrared light via OCD as a method 

[19]. Using equation (1), it can be calculated and 

displayed how much the obstruction and the 

infrared sensor is away from each other. 

 

𝑑 =
𝐹(𝑙+𝑥)

𝑙+𝐹𝑐𝑡𝐺(900−𝛼)
    (1) 

 

Here, 𝐹 is the filter focal length, α is the infrared 

light emission angle, and c is the light speed. x is 

the center distance between OCD detector and the 

IRED; and l is the infrared offset parameter. If the 

obstacle is too close from the car or too far from the 

car, it could be difficult to calculate the obstacle. 

Visual data such as detailed or broad range of data 

identification is collected using visual sensors. 

Using Infrared sensor data, vehicle longitudinal 

management,  Create different vehicle safety 

distances for different vehicle [20] speed can be 

created. Just as an example, the distance of the 

preceding vehicle is used to control the gap 

between obstacles when the car is driven, to 

perform the brake validation, and to use visual 

sensing devices in order to drive the longitudinal 

driving speed of the vehicle. 

 

 
Figure 1. System Visual flow 

 

This technique of dual frame variation is typically 

used in image processing as in Figure 1. This 

technique is the computing process for the 

following equation (2): 

 

𝑑𝐾(𝑋0, 𝑌0) = |𝐹𝐾(𝑋0, 𝑌0) − 𝐹𝐾−1(𝑋0, 𝑌0)|   
(2) 

 

Here, 𝐹𝐾 𝑎𝑛𝑑  𝐹𝐾−1  are two successive image 

sequences, 𝑑𝐾  is the image following equation (3) 

differentiation, and (𝑋0, 𝑌0)  is the pixel coordinate. 

 

𝑅𝐾(𝑋0, 𝑌0) = {
1 𝑖𝑓((𝑋0, 𝑌0) > 𝑇𝐻) 

0 𝑒𝑙𝑠𝑒
    

(3) 

In this case, 𝑇𝐻  is the pair parameter during 

threshold processing, and 𝑅𝐾  is the foreground 

target following equation (4) threshold processing. 

 

{|
𝐹𝐾(𝑋0, 𝑌0) − 𝐹𝐾−1(𝑋0, 𝑌0)

𝐹𝐾(𝑋0, 𝑌0) − 𝐹𝐾−2(𝑋0, 𝑌0)
|

> 𝜏1

> 𝜏2
  (4) 

𝜏1 and 𝜏2 are two different reference points in this 

case. By recording the instant that ultrasonic waves 

are released and reflected back when they come 

into contact with an obstruction, ultrasonic sensors 

are able to determine the distance between an 

automobile and that object in equation (5). 

 

{

𝑑 =
𝑣×(𝑡2−𝑡1)

2

𝑣 = 𝑣0√1 +
𝑡

273

    

(5) 

 

Here, t is the ambient temperature, 𝑣0  is the 

ultrasonic speed, 𝑣  is the ultrasonic speed in the 

current environment, 𝑡2 is the moment at which 

ultrasonic waves reflect back, 𝑡1  is the movement 

of the emitted wavelength, and d is the distance 

function. To account for ultrasonic range error, the 

least square of relative error method is applied, and 

it is shown as follow equation (6). 

 

[𝑀𝐼𝑁 = ∑ [
∆𝑥𝑖

𝑥𝑖
]

2

𝑌 = 𝐴𝑋 + 𝐵
    

(6) 

 

Here, X is the metric for the distance between the 

obstacle and the car, Y is the actual distance 

between the obstacle and the car, ∆𝑥𝑖  is the error 

parameter following fitting processing, and B is a 

constant that defines the linear correlation between 

the actual and calculated distances. A is a 

coefficient that defines the linear correlation 

between the actual and calculated distances. 

 

3.2. Fuzzy interference system 

 

Fuzzy control theory is, in short words, a theory of 

fuzzy controlled implemental connection on 

computer basis to fuzzy set theory. It shows what is 

required to fabricate a complete mathematical 

model architecture for the thing under control. To 

this end, most of the time, the fuzzy control 

technique is used to regulate the nonlinear, time 

varying and left to be developed designs and the 

architectures are simplified. Since fuzzy control 

theory is capable of effective processing with fuzzy 

data, it is applied to improve the obstacle avoidance 

strategy and improve the traffic vehicles’s accuracy 

in identifying obstacles with the influence of fuzzy 

data. Since fuzzy control includes fuzzy pairs 

obtained by fuzzy reasoning and applied upon the 

managed item, the controlled item is fuzzified via 

fuzzy mathematical relations and validated against 

the fuzzy things obtained by fuzzy reasoning. 

Fuzzy pair is a fuzzy and unclear relationship of 
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full objects, and the membership function is the 

relationship of objects. Fuzzy set has its 

membership functions defined, which are the first 

one being a triangle function, namely fuzzy 

performance of them [21]. The fuzzy interference 

architecture is presented in Figure 2. 

 

 
Figure 2. Improved Fuzzy with obstacle avoidance 

process 

 

To provide for reasonable obstacle avoidance 

characteristics for intelligent vehicles, the efficient 

vehicle obstacle avoidance technique by fuzzy 

control theory enhanced is able to optimally detect 

obstacles encountered while vehicle is operating 

and creates obstacle avoidance commands to the 

vehicle regarding a particular kind of obstacle. 

Smart car obstacle avoidance features fall into 3 

basic categories. In order to improve the vehicle’s 

driving capabilities, the lateral control input content 

must be first paired. Driving vehicle location is 

determined by using visual and ultrasonic sensing. 

The current traffic and road statistics are obtained 

via network search. The efficient vehicles are able 

to avoid obstacles under different phases, and such 

matching takes place with the speed and angle of 

travel under different phases. In this scenario the 

direct target qualities of efficient vehicles are that 

the road surface is level and there are no 

obstructions stopping the efficient car from 

proceeding [22]. The vehicle travel on the route to 

destination is calculated efficient. The car is 

improved to be more smooth, accounting for the 

dynamics behaviors of the vehicle and the change 

of kinetic energy when driving [23]. 

The consideration of reasonable obstacle avoidance 

behaviour of intelligent cars is the key that ensures 

their safe operation and thus the road safety. To 

guarantee the safety of vehicle operation, the 

vehicle has to balance the contribution of the 

deviation resulting from the obstacle avoidance 

behaviour [24] and that provided by its own 

balance. Prediction of the ground friction force and 

the construction of the obstacle avoidance 

amplitudes in different road conditions is possible 

through road condition detection. In order to keep 

the vehicle stable when the road friction becomes 

so low, the safety line setting is increased, which 

will broaden the obstacle avoidance space and 

consequentially lower the obstacle avoidance level 

[25]. Finally, the proposed intelligent vehicle 

obstacle avoidance technology is based on the three 

aforementioned behaviours and the actual driving 

conditions using the basis of the fuzzy control 

theory. Intelligent vehicles being driven is gathered 

data of the vehicle by real time detection 

technologies including infrared, visible and 

ultrasonic sensors. After preliminary processing 

and transformation of these data, they are sent to 

the fuzzy control system. When we followed 

computation and analysis of the fuzzy control 

system [26], the intelligent vehicle receives 

intelligent matching obstacle avoidance directive 

based on the type of the obstacles. With the 

impediments effectively overcome, the position of 

the intelligent car and the scenario of the 

destination are combined with the resultant decision 

being made based on whether the intelligent car has 

reached its target. When the target is reached, the 

vehicle reaches an end state in terms of the obstacle 

avoidance operation. Otherwise, the process of the 

aforementioned is repeated until an intelligent 

vehicle reaches its destination [27]. 

 

3.3. Whale optimization algorithm 

 

WOA is a popular technique to solve a series of 

optimization problems [28]. The algorithm is split 

up into three phases — seeking for the prey, 

bubble-net foraging and encircle prey. This 

metaheuristic optimization is influenced by the 

distinctive that humpback hunting paradigm [29]. 

The unique features of the optimizer used by WOA 

[30] make search capabilities better than the usual 

ones. Therefore, it is mainly used to optimize the 

network’s scheduling, allocation, and parameters. 

This optimization is said to be more commonly 

known and popular method of overcoming the 

speed of convergence and local optima [31]. In its 

solution, the delay of Improved WOA when applied 

across multiple geographically disparate data 

centres with time delays is handled using a parallel 

processing approach [32]. Independently, each data 

center then consumes its own version of the 

threshold WOA algorithm to consume from its 

population of potential solutions [33]. The preferred 

prey are small herds of fish and krill and it is 

presented in equation (7). 

 

�⃗�(𝑇 + 1) =

{
�⃗� ∗ (𝑇) − �⃗�. 𝑑                                𝑖𝑓 𝑃 < 0.5

𝑑. 𝑒𝑏𝑙 . cos(2𝜋𝑙) + �⃗� ∗ (𝑇)         𝑖𝑓 𝑃 ≥ 0.5
    

(7) 

Here, P is a random number in [0,1], 𝑒𝑏𝑙 . cos(2𝜋𝑙) 

is a spiral updating location component, �⃗�. 𝑑  is a 
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coefficient vectors, �⃗� ∗ (𝑇)  is the location of the 

optimal solution and �⃗�(𝑇 + 1) is the new position 

of the whale. The WOA algorithm is launched 

based on a collection of random solutions. Each 

iteration, the search agents subsequently adjust their 

positions with respect to either randomly selected 

neighbor, or the best solution found thus far. This is 

done so that this parameter is reduced from 2 to 0 to 

provide exploration and exploitation, respectively. 

If |A| < 1, the best solution is picked to update the 

positions of the search agents, if instead |A| > 1 the 

result is a random search agent. On this scale of p, 

WOA alternates between spiral motion and circular 

motion. The WOA algorithm is finally ended when 

a termination requirement is satisfied [34]. Since 

WOA includes the exploration and exploitation 

capabilities, it can be theoretically considered as a 

global optimizer. In addition to that, the current 

best record of the delimited search space in the 

neighbourhood of its best answer may be used by 

the other search agents under the suggested hyper 

cube method. Thus, the adaptive variation of the 

search vector A of the WOA algorithm may allow it 

to seamlessly switch between exploration and 

exploitation. Several iterations (|A| > 1) are spent 

on exploration, the remainder are spent on 

exploitation, as A is reduced [35]. 

 

4. Results and Discussion 

 
This section has been evaluated the proposed 

technique using the several performance measures, 

such as the path deviation, minimum distance to 

obstacles, collision rate, accuracy, success rate 

comparison, reaction time, and processing time. 

However, the system was able to dynamically 

adjust the steering angle to control the path 

deviation and therefore follow a smooth trajectory 

steering around obstacles, all with greater accuracy 

than the other systems. First, the minimum distance 

to the obstacle was optimized in a manner that 

guaranteed a safe distance without abrupt 

movements of the vehicle. With regards to collision 

prevention, the system greatly reduced collision 

rates compared to standard methods because of its 

improved ability to make decisions and respond in 

real time. The proposed model was able to increase 

the accuracy of obstacle detection and avoidance as 

well as fuzzy information processing and adaptive 

driving conditions. Moreover, the improved fuzzy 

inference model proved to be superior compared to 

conventional obstacle avoidance techniques such as 

Fuzzy Logic, Reinforcement Learning (RL), and 

Model Predictive Control (MPC) in different 

driving environments. In addition, the system 

proved a faster reaction time for emergencies and 

faster processing time, both of which would enable 

faster decision making, as well as facilitating real 

time adaptability in situations of high speed 

driving. This results validate that the proposed 

system improves in intelligent vehicle navigation in 

which Fuzzy inference is well combined with 

modern optimization schemes for both safety and 

driving efficiency. 

 

 
Figure 3. Path deviation 

 

Figure 3 is the Path Stability Comparison which 

shows the path deviation percentages for the 

different obstacle avoidance methods, Fuzzy, RL, 

MPC and the Proposed Method. The path deviation, 

its definition being the percentage deviation from 

an ideal trajectory, is a function of path stability, 

where the smaller the number the better is the path 

stability. With a deviation in the path of 

approximately 12% to 14%, the Fuzzy method has 

the highest degree of instability due to heuristic 

based decision making. As the media method 

suffices for effectively processing such 

information, it is slightly enhanced by the RL with 

deviations reaching approximately 9–11%, which 

still struggles with dynamic environmental changes. 

A second MPC method was developed which 

further enhances stability, and generates deviations 

between 6% and 9% by optimally adjusting the 

vehicles trajectory using its predictive control 

mechanism. Nevertheless, the Proposed Method is 

superior to other methods in terms of the lowest 

path deviation, which varies between 5% to 7%. 

This improvement indicates the integration of fuzzy 

inference with the whale optimization algorithm is 

effective to make the trajectory while adaptive real 

time decision making and reduce unnecessary 

fluctuation of vehicle movement. In general, the 

Proposed Method produces the most stable path, 

the deviation of which is greatly reduced when 

compared to the conventional methods, and 
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therefore, the Proposed Method is much more 

preferable for intelligent vehicle navigation in 

dynamic environments. 

 

 
Figure 4. Distance function 

 

The minimum distance from an obstacle maintained 

with different obstacle avoidance methods are the 

fuzzy logic, reinforcement learning, model 

predictive control and the proposed one these are 

shown in the Figure 4. Reinforcement learning 

tends to keep a slightly lower distance of about 1.0 

meters, closer to collision than the fuzzy method 

can achieve a minimum distance of about 1.2 

meters. Model predictive control gets better 

performance in the sense that it keeps at about 1.5 

meters in distance. It is shown that the proposed 

method surpasses all other methods in maintaining 

a maximum distance of roughly 1.8 meters from 

obstacle, which increases safety and decreases the 

probability of collision. This shows how the 

proposed approach has achieved a more secure and 

stable obstacle avoidance strategy than the existing 

methods. 

 

 
Figure 5. Collisions 

 

For comparing with other obstacle avoidance 

methods, we provide the Figure 5 which shows the 

number of collisions between four different 

obstacle avoidance methods, including fuzzy, RL, 

MPC and the proposed method. This result 

indicates that RL has about 8 collisions, which is 

the highest among all algorithms, implying that its 

obstacle avoidance ability might not be optimal. 

The RL approach gets a moderate number of 

collisions, around 5; and by the same token, it is 

found to be better than fuzzy but not the best case. 

Approximately 4 is a further reduction in collision 

for the MPC method and displays the further 

enhanced stability of the MPC method in obstacle 

avoidance. With this, the least collisions number is 

achieved by the proposed method which is 2 and 

represents the better efficiency than others to keep 

vehicles secure. Therefore, above these findings 

highlight that the proposed method presents 

superior performance to existing techniques, as it 

lowers significantly the probabilities of collision, 

and therefore it is a more reliable solution to solve 

the intelligent vehicle navigation. 

 

 
Figure 6. Accuracy comparison 

 

In the Figure 6, accuracy comparison of the four 

different methods with fuzzy, RL, MPC, and the 

proposed method is given. It is found that the fuzzy 

method achieves approximately 82% accuracy, a 

moderate performance. This is improved by the RL 

method, though slightly, to around 85%. This 

further enhances the accuracy of the method to 90% 

and as a result appears to be more robust and 

efficient. This proposes method earned the highest 

accuracy of then more than 95%, which means it 

has outperformed in achieving precise and accurate 

results. Therefore, the above findings show how 

significantly the proposed method outperforms the 

existing techniques in achieving better accuracy in 

decisions and system performance. 
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Figure 7. Success rate comparison 

 

“Success rate comparison” Figure 7 provides 

percent success rate of four different methods 

FUZZY, RL, MPC and the Proposed method. 

However, among the mentioned methods, the 

FUZZY method has obtained the lowest success 

rate of 22.7%, which makes it relatively less 

effective. However, the RL method still had a less 

successful result (i.e., had a success rate of 24.1%) 

although it was better than if not as effective as the 

other approaches. Further performance 

improvement is obtained from the MPC method 

with a success rate of 25.6%. Remarkably, the 

Proposed model yields the highest success rate of 

27.6% outperforming the standard approaches. This 

implies that the proposed method has a higher 

potential solution than what it currently could offer, 

as it had not been able to optimize algorithmic 

enhancements or the learning mechanisms. 

 

 
Figure 8. Reaction time 

 

The "Reaction Time Comparison" Figure 8 presents 

the reaction times (in seconds) for four different 

methods: FUZZY, RL, MPC, and the Proposed 

model. Among these, the FUZZY method exhibits 

the highest reaction time, exceeding 0.5 seconds, 

indicating a slower response. The RL method 

shows an improvement with a reaction time slightly 

above 0.4 seconds, demonstrating faster decision-

making compared to FUZZY. The MPC method 

further reduces the reaction time to approximately 

0.4 seconds, indicating enhanced efficiency. 

Notably, the Proposed model achieves the lowest 

reaction time, approximately 0.3 seconds, 

highlighting its superior responsiveness. The 

decreasing trend in reaction time across the 

methods suggests that the Proposed approach 

optimizes processing speed, making it the most 

efficient choice for applications requiring quick 

responses. 

 

 
Figure 9. Processing time 

 

The processing time (in seconds) for four different 

methods namely, FUZZY, RL, MPC and the 

Proposed model is demonstrated in the processing 

time comparison Figure 9. The processing time of 

FUZZY is the highest, more than 0.12 seconds, 

meaning it is relatively slower in computational 

efficiency. RL method can lower the processing 

time, approximately 0.08 seconds, and is capable of 

furnishing superior processing supply. Further 

reduction in processing time is achieved by the 

MPC method which brings it down to about 0.06 

seconds, which is more optimized. It is also worth 

noting that the Proposed model minimizes the 

process time to 0.05 seconds, which is quite low 

compared to other models. It can be inferred that 

the proposed approach reduces the computational 

overhead and thus the trend of decreasing 

processing time on different methods results into 

becoming efficient for time sensitive applications. 
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4.1. Limitations and future scope 

 

Although the proposed Improved Fuzzy Inference 

Based Emergency Obstacle Avoidance Control 

System would offer significant advancements 

compared to other existing methods, there are some 

limitations that ought to be addressed for a wider 

dissemination. One major limitation is that the 

system relies on sensor accuracy since the 

techniques employed for multi sensor fusion are 

visual perception and ultrasonic detection. Possible 

sources of detection accuracy are bad lighting, bad 

weather, noise on the sensor. Also, the optimization 

algorithm increases processing overhead but 

provides enhanced decision making at the expense 

of computational complexity. Therefore, this 

presents challenges for real time implementation on 

low power embedded systems, prohibiting 

deployment in other resource constrained 

environments. The second limitation is the system’s 

generalizability in such complex urban scenarios 

where highly dynamic obstacles, unpredictable 

pedestrian movements and intricate traffic 

conditions are impossible to be handled with stiff 

manipulation. The system has high efficiency in 

controlled, structured environments, where the 

performance in highly unstructured, highly 

congested environments is still an open area. 

Future research is aimed to combine more advanced 

fusion techniques like LiDAR and radar-based 

perception to solve those limitations in order to 

increase robustness in different environmental 

conditions. Three machine learning driven 

predictive models that may further enable the 

system to predict the movement of an obstacle and 

optimize avoidance strategies can be incorporated. 

In addition, as a means to reduce computational 

complexity, hardware acceleration techniques, 

including FPGA based implementations or edge 

computing, should be applied to perform real time 

processing on the low power embedded platforms. 

Reinforcement learning based decision-making 

mechanisms can further improve the obstacle 

avoidance efficiency with extension of the system’s 

adaptability to urban environments. Furthermore, 

the inclusion of vehicle to everything (V2X) 

communication will ensure that the system is able 

to receive information about the traffic and 

obstacles from other vehicles and infrastructure at 

real time, enhancing its situational awareness and 

decision accuracy. Further developed works may 

also consider collaborative control mechanisms 

among multiple intelligent vehicles to better reuse 

the obstacle detection data and to collaborate to 

improve safety and traffic flow. Real world testing, 

in terms of different driving conditions, includes 

extreme weather, different road surfaces and 

complex urban intersections, will finally be 

necessary to refine and validate the reliability and 

effectiveness of the system. 

 

5. Conclusion 

 

It was with the intent of improving safety and the 

vehicle’s decision making under uncertain and 

dynamic road conditions that this study presented 

an improved fuzzy inference-based emergency 

obstacle avoidance control system for intelligent 

vehicles. In this method, the proposed system is 

integrated fuzzy logic with an optimized control 

mechanism to facilitate adaptive steering and 

acceleration adjustments in real time. Based on 

multi-sensory fusion including visual perception 

and ultrasonic detection, the system recognizes the 

obstacle and assesses the pose of the collision risk. 

Moreover, a fuzzy processing algorithm optimizes 

fuzzy membership functions and inference rule for 

a precise and efficient decision making. 

Performance evaluations show the proposed system 

is more superior than Fuzzy, RL and MPC 

methods. Analysis of success rate shows that this 

yields the best performance of 27.6%, but as 

confirmed by the analyses of reaction and 

processing time, faster response and improved 

computational efficiency are achieved. These 

finally lead the system to reduce the emergency 

response time, increase the accuracy of obstacle 

detection, and maximize the vehicle’s trajectory 

planning. Simulations and real experiments are 

done on high-speed driving scenarios and is 

validated to be effective with superior stability with 

lower overshoot. Future research involves 

developing deep learning perception models for the 

perception, testing in real world at various 

environments for collaboration between obstacle 

avoidance of vehicles and intelligent vehicle safety 

through vehicle to vehicle (V2V) communication. 
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