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Abstract:  
 

This paper introduces three-dimensional Continuous-time autonomous dynamical 

system. We Construct new Lyapunove function for this system, the analysis of stability 

by new method is consistence with other method of stability. Basic dynamical proper 

ties such as equilibrium points, dissipativity, multistability, Wave form in time domain, 

phase portrait, bifurcation and Lyapunov exponents are studied, the analysis indicate 

that the system is unstable and hyperchaotic with Kaplan york dimension D_ky=2.1621. 

A novel feature of the system has multistability and attraction coexistence for two and 

three distinct initial condition sets. Also, adaptive control and synchronization system 

has been created, it is found that the hyperchaotic system achieved good results. 

 

1. Introduction 
 

Recently there has been increasing interest in 

nonlinear dynamical systems [1]. As a rule, 

Complexity occurs in dynamical system namely, 

System Internal microscopic or external 

microscopic motion affected by one or more forces, 

dynamical system may be conservative 

(Hamiltonian), they experience no energy loss, 

conversely system can be dissipative, which is the 

case in most real-life Situations, that involve losses 

[2]. Stability has become of great importance and 

focus of study for many researchers in recet times 

due to industrial and technological advance [3,4].   

Rather than Chance Chaos is the ability to predict 

results, under Standing chaotic behavior has 

permeated every area of study in the modern era 

[5]. Numerous natural and scientific events exhibit 

chaotic motion, a common type of chaotic behavior, 

Chaotic dynamic according to many scientists is a 

fundemental Component in the understanding of 

these phenomena, numerous fields, including fluid 

mechanics, environmental science metrology, optic, 

heart and brian dynamics, epidemiology and illness 

research have detected chaotic motions [6,7]. 

Hyper chaos concept was firstly introduced in the 

seminal paper of Rössler to assert the dynamical 

patters of dynamical system when more than one 

positive Lyapunov exponent is found [8,9]. The 

discovery of many 3-D dynamical system such that 

Rabinovich system [10, 11, 12], sprott system [13], 

zhou system, etc [14,15]. 

One type of chaos treatment is chaos control, which 

falls into two categories: suppressing chaotic 

behaviour when it is harmful or an attempt to 

eradicate it, and creating and enhancing disorder 

when it is desired. Controlling a chaotic system is 

achieved through synchronisation [16,17,18,19]. 

Chaos synchronisation and control are crucial for 

studying nonlinear dynamical systems and are 

highly relevant for using chaos [20,21,22,23] 

 

2. System Description 
 

Recently, Safieddine Bouali constructed the new 3-

D system, [24]. The system is described by 

 

𝑥̇ = 𝑥(𝑎 − 𝑦)+∝ 𝑧 

𝑦̇ = −𝑦(𝑏 − 𝑥2) 

𝑧̇ = −𝑥(𝑐 − 𝜎𝑧) − 𝛽𝑧   ……………………… (1)  

http://dergipark.org.tr/en/pub/ijcesen
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The variables x, y, and z typically represent states 

of the system. 

 

Where 𝑎 = 4 ,𝑏 = 𝜎 = 1, 𝑐 = 1.5, ∝= 0.3, 𝛽 =
0,05 , and the initial condition (IC) of (x0, y0, z0) = 

(0.5,0.5,0.5). 

3. Properties of System (1) 
3.1 System dissipativity  

System (1) can be expressed in vector notations as 

𝑓 =  [

𝑓1(𝑥, 𝑦, 𝑧)
𝑓2(𝑥, 𝑦, 𝑧)
𝑓3(𝑥, 𝑦, 𝑧)

] 

Where the divergence of system (1) can be 

calculated using equation (2) 

∇. f =
𝜕𝑓1

𝜕𝑥
+

𝜕𝑓2

𝜕𝑦
+

𝜕𝑓3

𝜕𝑧
… … … … … … … . . (2) 

Where 𝑓1 = 𝑥̇,  𝑓2 = 𝑦̇, 𝑓1 = 𝑧̇ 

Take the parameter values as in system (1), we get:  

∇. f = 𝑥2 + 𝑥 − 𝑦 + 2.95 … … … … … … . . (3) 

So, the dissipativity of system (1) is expressed in 

(3), as a variable rather than a Constant, it implies 

that system's (1) energy dissipation is not fixed, but 

depends on the system's (1) current condition. As a 

result, the system's nature is conservative for 

various beginning values and dissipative for the 

same ones.   

 

3.2 Equilibrium points  
 

Solving the following system of equations yielded 

the equilibrium points of system (1).  

𝑓1 = 𝑓2 = 𝑓3 = 0  , in (2) with 𝑎 = 4, 𝑏 = 𝜎 =
1, 𝑐 = 1.5, 𝛼 = 0.3, 𝛽 = 0.05 . A calculation yields 

five equilibrium points one trivial equilibrium point 

𝐸1 = (0,0,0)𝑎𝑛𝑑  
𝐸2 = (1, 0, − 13.333), 𝐸3 =
(− 1, 0 ,13,333), 𝐸4 = (1, 0, 1.57), 𝐸5 =
(− 1, 0, 1.42) 
 

3.3 Stability analysis 

3.3.1 Characteristic equation 

 

Linearizing system (1) a round Equilibrium point E 

with the aim to determine the Jacobian matrix J, it's 

corresponding eigen value λi, i=1,2,3,4 are found 

by solving the characteristic equation 

|𝐽 − 𝜆𝐼| = 0 where I, the unit matrix. 

The Jacobian matrix of new system (1) at E is given 

by 

 

𝐽(𝐸) =  [

𝑎 −𝑥𝑦 𝛼

−2𝑥𝑦 (𝑏 − 𝑥2) 0
−𝑐𝑥 0 𝜎𝑥 − 𝛽

]  

 

Thus, the Jacobian matrix of system (1) at E1, is 

obtained as: 

𝐽(𝐸0) =  [
4 0 0.3
0 −1 0

−1.5 0 −0.05
]  

 

Using Matlab 2024 the characteristic equation of 

system (1) at E1 is:  

 

 

𝜆3 − 2.9𝜆2 − 3.7𝜆 + 0.25 =
0 … … … … … … … . . (4)  
These are the eigenvalues: 

 

𝜆1 = −1,  𝜆2 = 3.885, 𝜆3 = 0.064  
 

Thus, the trivial equilibrium E1, of 3-D system (1) 

is hyperbolic a saddle-node, which is unstable. 

 

Following the same methodology, it was found that 

the remaining equilibrium points E2, E3, E4 and E5 

are unstable, and the result reported in Table (1). 

Hence the new system (1), is unstable. 

 

3.3.2 Continued Fraction criteria,  

 

The criterion was applied to system (1)'s 

characteristic equation (4) by creating a continuing 

fraction from equation (4)'s odd and even 

components. 

𝑄1(𝜆) = 𝜆3 − 3.7 𝜆 
 

𝑄2(𝜆) = −2.95𝜆2 + 2.5 

To asses the fraction 𝑄1/𝑄2, divide the 

denominator by the numerator, and then invert the 

reminder to get a continued fraction the way it is. 

 

𝑄1

𝑄2
= 𝐾1𝜆 +

1

𝐾2𝜆 +
1

𝐾3𝜆 +
1

𝐾4𝜆

 

 

if all 𝐾1, 𝐾2, 𝐾3  are positive, the roots of equation 

(4) will have negative real parts. since: 

 

𝐾1 = - 0.339 < 0 𝐾2 = 0.816 > 0 𝐾3=-14.461 

Therefore, system (1) is unstable. For the rest of 

equilibrium points 𝐸1, 𝐸2, 𝐸3, 𝐸4 𝑎𝑛𝑑 𝐸5 we get 

System (1) unstable, and the results are given in 

Table (2). 
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Table 1. Stability and classification detected Equilibrium points for new system (1) 

Equilibrium points 

 

The corresponding characteristics and eigenvalues Type of Equilibria and stability 

 

E1= (0,0,0,0) λ3-2.9 λ2 -3.7 λ+0.25=0 

(λ1, λ2, λ3) = (-1,3.885,0.064) 

Hyperbolic equilibrium point 

Unstable Node 

 

E2= (1,0, - 13.33) λ3-4.95 λ2+8.24 λ=0 

(λ1, λ2, λ3) = (0,2.475 -1457i,2.475+1.457i) 

Hyperbolic equilibrium point 

Unstable Focus 

 

E3= (- 1, 0, 13.33) λ3-2.95 λ2-7.749 λ =0 

(λ1, λ2, λ3) = (-1.675,0.4625) 

Non-Hyperbolic equilibrium  

Unstable Node 

 

E4= (1, 0, 1.57) λ3-4.95λ2+3.779 λ =0 

(λ1, λ2, λ3) = (0,0.943,4.006) 

Non-Hyperbolic equilibrium  

Unstable Point 

 

E5= (- 1, 0, 1.42) λ3-2.95 λ2-4.176 λ =0 

(λ1, λ2, λ3) = (-1.045,0,3.995) 

Non- Hyperbolic equilibrium 

Unstable Point 

 

 

3.3.3 Lyapunov Function 

 

We can use quadratic function of system (1)  

 

V(x, y, z)  =  
1

2
 ∗  (x2  +  y   2 +  z 2)  

𝑉̇(𝑥, 𝑦, 𝑧) =  
𝜕𝑣

𝜕𝑥
.

𝜕𝑥

𝜕𝑡
+

𝜕𝑣

𝜕𝑦
.

𝜕𝑦

𝜕𝑡
+

𝜕𝑣

𝜕𝑧
.

𝜕𝑧

𝜕𝑡
 

…………………………(5) 

Substitute system (1) in equation (5), we find  

𝑉̇(𝑥, 𝑦, 𝑧, ) = 4𝑥2 − 𝑥2𝑦 + 0.3𝑥𝑧 +  𝑥2𝑦2 − 𝑦2

+ 𝑥𝑧2 − 1.5𝑥𝑧
− 0.05𝑧2 … . … … … … (6) 

Substitute the initial condition in (6), we get 

𝑉̇(𝑥, 𝑦, 𝑧, )> 0, also at the equilibrium points 

𝐸1, 𝐸2, 𝐸3, 𝐸4 𝑎𝑛𝑑 𝐸5, the results are shown in Table 

(1). Hence system (1) is globally unstable. 

 

3.3.4 A New Method for Lyapunov Function 

Construction Via Continued Fractions: 

 

Step 1: Apply continued fraction criterion to create 

the factors of the characteristic polynomial. 

 

𝑄(𝜆) = 𝑎0𝜆𝑛 + 𝑎1𝜆𝑛−1 + 𝑎2𝜆𝑛−2 + ⋯ … . +𝑎𝑛−1𝜆
+ 𝑎𝑛 = 0 … … … … … … . (7) 

Step 2: construct the Lyapunov Function as:  

𝑉(𝑥) =
1

2
∑|𝑘𝑗|𝑥𝑗

2

𝑛

𝑗=1

… … … … … … … … … . . (8) 

From the paragraph (3.3.2) we have  

𝐾1 = 0.339, 𝐾2 = 0.816 𝑎𝑛𝑑 𝐾3 = −14.461 

With 𝑥1 = 𝑥, 𝑥2 = 𝑦  𝑎𝑛𝑑 𝑥3 = 𝑧  so the Lyapunov 

Function  

𝑉(𝑥, 𝑦, 𝑧)

=
1

2
 (|𝑘1|𝑥2 + |𝑘2|𝑦2

+  |𝑘3|𝑧2) … … … … … … … … … … … . (9) 

Step 3: The Lyapunov function, V must achieve the 

following condition for Stability of system 

 

V(x, y, z) = 0 ⇔ (x, y, z) = (0,0,0) 

V(x, y, z) > 0 ⇔ (x, y, z) ≠ (0,0,0) 

V̇(x, y, z) < 0 ⇔ V(x, y, z) ≠ (0,0,0) 

 

The new criterion applied to all equilibrium points 

of system, we get V̇(x, y, z) > 0, therefore the 

system (1) in not asymptotically stable and the 

results are given in table (2). 

 

 

Table 2. A summary of the stability of system (1) based on all the formentioned stability criteria. 
Equilibrium points 

 

Lyapunov function 

V̇ 

Continued Fraction 

Stability 

New method for costructing 

Lyapunov Function via continued 

fractor 
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𝑬𝟏 = (𝟎, 𝟎, 𝟎) 0 𝑘1 = −0.339 

𝑘2 = −0.815 

𝑘3 = −14.461 

 

0 

𝑬𝟐 = (𝟏, 𝟎, − 𝟏𝟑. 𝟑𝟑𝟑) 148.0 

(Unstable) 
𝑘1 = −0.2020 

𝑘2 = −0.6007 

𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 

 

2.0202𝑥10−5 

(Unstable) 

𝑬𝟑

= (− 𝟏, 𝟎, −𝟏𝟑. 𝟑𝟑𝟑) 

188.8 

(Unstable) 
𝑘1 = −0.339 

𝑘2 = 0.380694 

𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 

 

3.38983𝑥10−5 

(Unstable) 

𝑬𝟒 = (𝟏, 𝟎, 𝟏. 𝟓𝟕) 4.457 

(Unstable) 
𝑘1 = −0.2020 

𝑘2 = −1.3098 

𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 

 

0.903232 

(Unstable) 

𝑬𝟓 = (− 𝟏, 𝟎, 𝟏. 𝟒𝟐) 7.62 

(Unstable) 
𝑘1 = −0.339 

𝑘2 = 0.706417 

𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 

 

1.221525 

(Unstable) 

 

For all the equilibrium points according to roots of 

characteristic equation, Lyapunov Function stability 

criteria, continued fraction and the new method for 

constructing Lyapunov function using continued 

fractions System (1) is not stable and this implies 

chaos. 

3.4 Lyapunov Exponents 

 

An essential tool for characterizing an attractor of a 

finite - dimensional nonlinear dynamical system 

and determining how sensitive it is beginning 

conditions are the Lyapunov exponents, when an n-

dimensional hyper chaotic system has a higher 

number of Lyapunov exponents (n-2 positive 

Lyapunov exponents), it is more complex. 

Lyapunov exponent is a method for detecting 

chaos. [2]. For the starting state (0.5.05.05) and 

parameters (a, b, c, σ, α, β) = (4,1,1.5,1, 0.3,0.05), 

we compute the Lyapunov exponents of system (1) 

using MATLAB 24. The obtained Lyapunov 

exponents are 

L1=0.003903, L2=0.098913 L3=-0.634239 Because 

L1, and L₂ are positive and L3 is negative, therefore 

system (1) is hyperchaotic. 

The Kaplan-York dimension Dky can expressed as 

[25, 26] 

𝐷𝑘𝑦 = 𝑗 +
1

𝐿𝑗+1
∑ 𝐿𝑖

3

𝑖=1

< 0 

meet both ∑ 𝐿𝑖
𝑗
𝑖=1 > 0 𝑎𝑛𝑑 ∑ 𝐿𝑖

3
𝑖=1 < 0    

 

For system (1) ∑ 𝐿𝑖
2
𝑖=1  = 0.102816>0 and ∑ 𝐿𝑖

3
𝑖=1 =-

0.5314234<0 with Dky = 2.1621. 

 

Figure (1) shows the dynamic of the Lyapunov 

foundations of the hyperchaotic system (1) 

 

 
Figure 1.  Lyapunov Exponents of hyper chaotic system 

(1) 

3.5. Numerical   simulation 

For numerical simulation, we solved the 3D system 

(1) parameters value, and IC as in (1) using 

conventional fourth order Rung-kutta technique in 

MATLAB. 

3.5.1 Waveform analysis 

One of the fundamental features of chaotic 

dynamical systems is the non-periodic structure of 

the wave form of hyperchaotic system (1), as seen 

in Figures (2-4), shows the aperiodic waveforms of 

xt, yt and zt in time domain. 

3.5.2 Phase Portraits Analysis 

 

In this paragraph shows phase portraits of attractors 

of system (1) in (x versus y), (x versus z) and (y 

versus z) plane and in (x, y, z) space for (x, y, z) = 

(0.5,0.5,0.5). 
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Figure 2. Times versus x,  Figure 3. Times Versus y, Figure 4. Times versus Z, 

 

 
Figure 5. 2D phase plot of the attractors in (x -y) plane 

 

 
Figure 6. 2D phase plot of the attractors in (y -z) plane 

 

 
Figure 7. 2D phase plot of the attractors in (y - z) plane 

 
Figure 8. 3D phase plot of the attractors in 

It appears from fiigures (5-7) and figure (8) that the 

attractors of system (1) exhibts coplexare behaviors 

of chaotic dynamics.  

 

3.6 Multistability 

 

Attractors Coexisting Multistability in dynamical 

systems is the coexistence of two or more attractors 

with distinct initial circumstances but the same set 

of parameters. 

Multiple in a Multistable System allows flexibility 

in system performance rich without changing 

parameters that lead to novel behavior figures 9(i) 

and l0(i) shows the coexistence of two attractors 

with different initial conditions and same, set of 

parameters, while figures 9(ii) and 10(ii) shows the 

coexistence of three attractors with different initial 

conditions and same set of parameters, values as 

given in table (3) 

 

3.7. Bifurcation Analysis 

 

Bifurcation is a useful manner to analyze the 

behavior of attractors of system (1), bifurcation 

diagram is a tool used in nonlinear theory to 

 
Table 3.  Coexistence with same parameter set and 

different initial conditions 
Initial values IC Parameters Color Figures 

𝑥1 = 0.5, 𝑦1

= 0.5, 𝑧1 = 0.5 
a=4, b=0.1, 

 c=1, 𝜎 = 1,  
𝛽 = 0.05,
, 𝛼 = 0.3 

 

Red 

Green 

Blue 

Figure (9) 

(i), (ii) 

𝑥2 = 1.15, 𝑦2

= 1.15, 𝑧2 = 1.15 

𝑥3 = 1, 𝑦2 = 1, 𝑧3

= 1 

𝑥1 = 0.5, 𝑦1

= 0.5, 𝑧1 = 0.5 
a=4, b=0.1, 

 c=1, 𝜎 = 1,  
𝛽 = 0.05,
, 𝛼 = 0.3 

 

Red 

Green 

Blue 

Figure 

(10) 

(i), (ii) 

𝑥2 = 0.1, 𝑦2

= 0.2, 𝑧2 = 0.5 

𝑥3 = 0.3, 𝑦2

= 0.2, 𝑧3 = 0.5 
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Figure 9.  Coexistence of attractors of the hyper chaotic system (1) in (x, y, z) Space 

 

  

 
Figure 10. coexistence of attractors of hyperchaotic System (1) in in (x, y, z) space. 

 

understand the system's dynamic behaviors [27,28]. 

The bifurcation diagrams of state variables (x, y, z) 

in relation to the parameter a and fixed [𝑏 =
𝜎, 𝑐, 𝛼, 𝛽] = [1,1.5,0.3,0.05],and in relation to 

parameter b and fixed [𝑎 = 𝜎, 𝑐, 𝛼, 𝛽] =
[4,1,1.5,0.3,0.05], 𝑎𝑟𝑒 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛,    
the numerical analysis started with initial 

conditions (IC) [𝑥0, 𝑦0, 𝑧0] = [0.5,0.5,0.5] and 𝑡0 =

0, 𝑡𝑠𝑡𝑒𝑝 = 0.5 𝑎𝑛𝑑 𝑡𝑒𝑛𝑑 = 5000 , be the starting 

(the attending time), step time. and finalization time 

(in second) respectively. The corresponding 

bifurcation diagram depicted in Figure (11) and 

Figure (12) all shows non-periodic dynamics, so the 

system (1) behaves chaotic. 

 

 
(i)                                                 (ii)                                                    (iii) 

Figure 11.  Bifurcation diagram of system (1) with respect to parameter a in interval  𝑎 ∈ (0,10). 
(i)Bifurcation diagram of x, (ii)Bifurcation diagram of y, (iii) Bifurcation diagram of z 

 
(i)                                       (ii)                                                         (iii) 

Figure (12): Bifurcation diagram of system (1) with respect to parameter b in interval 𝑏 ∈ [0,5]. 
(i)Bifurcation diagram of x, (ii)Bifurcation diagram of y, (iii) Bifurcation diagram of z 
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4. Adaptive Control and Synchronization 

Technique 

In chaotic system there are many unstable orbits, 

and the chaotic attractor usually embedded with it 

an infinite number of unstable orbits. An unstable 

periodic or bit must be stabilized in order to Control 

chaos, by imposing only small stimulus to achieve 

the desired stability of the system. Adaptive 

Control and synchronization techniques are 

designed So system (1) is globally stabilized. 

4.1 Adaptive Control Technique 

To stabilize the hyperchaotic system (1), using 

adaptive Control technology, where the parameter 

(a) is unknown. Thus, the controlled hyperchaotic 

system 

 

𝑥̇  =  𝑥(𝑎 − 𝑦) + 0.3𝑧 +  𝑈1 (𝑡) 
𝑦̇  =  −𝑦(1 − 𝑥2) + 𝑈2 (𝑡) … … … … … … . . (10) 
𝑧̇=-x(1.5-z)-0.05z+𝑈3 (𝑡) 
 

 

Where the constants 𝑈1, 𝑈2 𝑎𝑛𝑑 𝑈3 𝑎re feedback 

controllers greater than zero to be designed to 

ensure (10) globally converges to zero, consider the 

functions of adaptive control. 

 

𝑈1(𝑡) = −𝑥(𝑎̂ − 𝑦) − 0.3𝑧 − 𝜇1𝑥  
𝑈2(𝑡)= y(1 − 𝑥2) − 𝜇2𝑦 

𝑈3(𝑡) = 𝑥(1.5 − 𝑧) + 0.05𝑧 −
𝜇3𝑧…………………. (11) 

Where 𝑎̂ is the estimates parameter of a, and 𝜇𝑖, 

(i=1,2,3 ) are positive substituting (11) into (10), we 

obtain: 

 

𝑥̇ = (𝑎 − 𝑎̂) 𝑥 – 𝜇1𝑥 
𝑦̇ = − 𝜇2𝑦……………………… (12) 
𝑧̇ =  − 𝜇3𝑧 

let the parameter error estimation 

𝑒𝑎 = 𝑎 − 𝑎̂ … … … … … … … … . . (13) 
using (13) the closed-loop dynamic (12) can be 

expressed as 

 

𝑥̇ = 𝑒𝑎  𝑥 – 𝜇1𝑥 
𝑦̇ = − 𝜇2𝑦……………………… (14) 
𝑧̇ =  − 𝜇3𝑧 
 

Let V the Lyapunov functions is positive definite on 

R4 

𝑉(𝑥, 𝑦, 𝑧, 𝑒𝑎) =  
1

2
 (𝑥2 +  𝑦2 + 𝑧2

+ 𝑒2
𝑎) … … … … … … … (15) 

also  

𝑒̇𝑎 = −𝑎̂ … … … … … … … … … … … . ( 16) 
Differentiate (15) and substitute (12) and (13), we 

get 

 

𝑉̇ =– 𝜇1𝑥2– 𝜇2𝑦2– 𝜇3𝑧2

− 𝑒𝑎[𝑎̂ + 𝑥2] … … … … . . (17) 
 

Assume that 𝑎̂ = [𝜇4𝑒𝑎 − 𝑥2] … … … … (18)  

 

Is the updated estimated parameter where 𝜇4 > 0 

Substitute (18) into (17), we get 

𝑉̇ =– 𝜇1𝑥2– 𝜇2𝑦2– 𝜇3𝑧2 − 𝜇4𝑒𝑎
2 … … … … . . (19) 

 

which is negative-definite on R4 and the controller 

stability is ensured. So, the aforementioned 

proposition has been demonstrated. 

Proposition (1): 

   For each initial value in equation (19) and 

estimated parameter provided by (20), and 

𝜇1, 𝜇2, 𝜇3 𝑎𝑛𝑑 𝜇4 are positive, the chaotic system 

(12) with unknown parameter is stabilized by 

adaptive control approach. This results in 

𝑉(𝑥, 𝑦, 𝑧, 𝑒) < 0     

 

4.2 ADaptiv Synchronization. 

 

In this section the adaptive synchronization 

technique of hyperchaotic system with unknown 

parameter a as drive (master), represented by:  

𝑥̇ = 𝑥(𝑎 − 𝑦) + 0.3𝑧 
𝑦̇ = −𝑦(1 − 𝑥2)……………………… (20) 
𝑧̇ =  −𝑥(1.5 − 𝑧) − 0.05𝑧 

 

While the slave (response) system considered as: 

𝑌̇1 = 𝑎𝑦1 − 𝑦1𝑦2 + 0.3𝑦3 + 𝑈1 

𝑌̇2 = −𝑦2 + 𝑦1
2𝑦2 + 𝑈2 … … … … … . . (21) 

𝑌̇3 = −1.5𝑦1 − 𝑦1𝑦3 + 0.05𝑦3 + 𝑈3 
 

 

Where 𝑦1,𝑦2, 𝑦3, 𝑦4. are state variables and 𝑢1,, 

𝑢2, 𝑢3, 𝑢4, are nonlinear controllers that need to be 

constructed to synchronize the two system (20) and 

(21).  

The Synchronization error between two systems: 

 

 𝑒𝑖 =  𝑦𝑖 − 𝑥𝑖 , 𝑖 = 1,2,3, … … … … … … . . (22)  
 using  

𝑒𝑖̇ =  𝑦̇𝑖 − 𝑥𝑖̇ 
 

Substitute in (1) and (22), the following error 

dynamics easily obtained as 

 

𝑒1̇ = 𝑎𝑒1 − (𝑒1𝑒2 + 𝑦𝑒1 + 𝑥𝑒2) + 0.3𝑒3 + 𝑢1 

𝑒2̇ = −𝑒2 + (𝑒2𝑒1
2 + 𝑦𝑒1 + 𝑥𝑒2)+𝑢2 
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𝑒3̇ = −1.5𝑒1 + (𝑒1𝑒3 + 𝑧𝑒3 + 𝑦𝑒1) − 0.05𝑒3 + 𝑢3 
 

𝑢1,, 𝑢2, 𝑢3, 𝑢4, are the adaptive control functions 

that are specified as: 

 

𝑢1 = −𝑎̂𝑒1 + (𝑒1𝑒2 + 𝑦𝑒1 + 𝑥𝑒2) + 0.3𝑒3 − µ1𝑒1 

𝑢2 = 𝑒2 − (𝑒1
2𝑒2 + 𝑦𝑒1 + 𝑥𝑒2) − µ2𝑒2 

𝑢3 = 1.5𝑒1 − (𝑒1𝑒3 + 𝑧𝑒3 + 𝑦𝑒1) + 0.05𝑒3 − µ3𝑒3 
 

Where µ1, µ2 and µ3 are positive real values and 𝑎̂ is 

the estimate value of a. 

 

Substitute (23) into (22) we get dynamical system 

of the synchronization error: 

𝑒1̇ = (𝑎 − 𝑎̂)𝑒1− µ1𝑒1 

𝑒2̇ = −µ2𝑒2 

𝑒3̇ = −µ3𝑒3 ………………. (24) 

 

Hence 

𝑒1̇ = 𝑒𝑎 𝑒1 − µ1𝑒1 

𝑒2̇ = −µ2𝑒2 

𝑒3̇ = −µ3𝑒3 ………………... (25) 

Where 𝑒𝑎 = 𝑎 − 𝑎̂ , 𝑒𝑎 ̇ = −𝑎̂̇ … … … . (26) 

The Lyapunov approach is used in order to prove 

the stability of the system (25). 

Consider the quadratic Lyapunov quadratic 

function: 

𝑣(𝑒1, 𝑒2, 𝑒3, 𝑒𝑎) =  
1

2
( 𝑒1

2, 𝑒2
2, 𝑒3

2, 𝑒𝑎
2) … … … ….(27)  

Which, on R4   is positive definite. 

After substituting the system (25) and (26), and 

differentiating equation (27) we obtain 

𝑉 =̇− µ1𝑒1
2  − µ2𝑒2

2 − µ3𝑒3
2 − 𝑒𝑎[𝑎̂ −

𝑒1
2]……………. (28) 

The following law updates the estimated parameter 

𝑎̂ = [𝑒1
2 + µ4𝑒𝑎]……………. (29) 

where µ4 is positive 

Substitute (31) in (30), we get 

𝑉̇ = −µ1𝑒1
2 − µ2𝑒2

2 − µ3𝑒3
2 − µ4𝑒4

2 
Which negative on R4 

 

       So, based on Lyapunov stability. It is clear that 

the synchronization error and parameter error decay 

to zero in exponential with time for all initial 

condition, as shown in figure (13). Therefore, the 

following proposition is validated. 

Proposition 2 

 

The identical hyperchaotic system (22) and (23) 

with unknown parameter (a) are exponentially and 

globally synchronized for all initial conditions by 

adaptive control law (25), and parameter updating 

law (31) and µ𝑖, 𝑖 = 1,2,3, α  are positive constant. 

 
Figure 13.  Convergent of trajectories for the dynamic of 

synchonizatio error 

 

5. Conclusion 

In this paper, we introduce a novel three 

dimensional continuous-time autonomous 

dynamical system. A new method for constructing 

Lyapunov function using continued fractions was 

developed demonstrating consistency with 

established stability analysis techniques. Through a 

comprehensive investigation of the system 

dynamical properties - including equilibrium 

points, dissipativity, multi stability, time domain 

waveforms, phase portrait, bifurcations, and 

Lyapunov exponents we established it's 

hyperchaotic nature with a Kaplan-York dimension 

of 𝐷𝑘𝑦 =2.1621. A key finding is the system's 

multistability demonstrating the coexistence of 

attractors under distinct initial conditions 

additionally an adaptive control and 

synchronization strategy was successfully 

implemented, demonstrating effective stabilization 

of the hyper chaotic dynamics. These findings 

contribute to the ongoing study of hyperchaotic 

systems and their potential applications in secure 

communications, control theory, complex system 

modelling and nonlinear science. 
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