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Abstract:  
 

In this study parameters of sensor models are estimated for low-cost ultrasound and laser 

range sensors. Sensor models that are best suited to simultaneous localization and 

mapping (SLAM) tasks for mobile robotics applications are used. Mathematical functions 

of sensor models with relevant parameters to be determined are explained. Particle swarm 

optimization (PSO) algorithm is used to find the best parameters that explain the 

experimental measurements optimally. Experiments are conducted for various sizes of 

obstacles at various distances and results are reported detailly in the corresponding 

section. Finally, results are discussed and future works to be built on the results are 

proposed. 

 

1. Introduction 
 

Mobile robot applications mostly demand range 

finders for various tasks among which object 

avoidance, path planning and simultaneous 

localization and mapping (SLAM) are some 

important examples [1]. Autonomous robots and 

vehicles use sensors, cameras, and other 

technologies to make instant decisions without 

human supervision [2]. Significant progress has been 

made in recent years in autonomous vehicles in 

collision avoidance, determining optimal safe 

routes, detecting obstacles, identifying objects, and 

avoiding them. Yasin et al. (2021) developed an 

algorithm for shape estimation and collision 

avoidance for autonomous robots by rotating the 

sensor instead of moving around obstacles using a 

low-cost ultrasonic sensor. This approach has 

yielded satisfactory results in tests with different 

object shapes in indoor conditions [3]. Aliyu et al. 

(2017) developed a microcontroller-based collision 

avoidance system that performs safety braking when 

the minimum safety distance between the vehicle 

and the obstacle is reached. Automatic braking is 

performed by detecting obstacles and distances 

using ultrasonic sensors, and the response time of 

this system was measured as 0.86 seconds on 

average [4]. In a similar study, Derkach et al. (2020) 

proposed a real-time obstacle avoidance algorithm 

for a mobile robot equipped with a microcontroller 

and four ultrasonic sensors. The noise density was 

adjusted using the Kalman filter, and successful 

results were obtained with 4.15 s and 0.07 m RMSE 

[5]. Kai-Tai Song et al. (2004) de-signed an 

ultrasonic sensor system to prevent side collisions at 

low speeds and showed that the system was effective 

up to 40 km/h vehicle speed. This study also 

investigated the effects of wind on detection and 

found satisfactory results up to 35 km/h wind speed 

[6]. Jin et al. (2018) designed a rotation-controlled 

omnidirectional intelligent obstacle avoidance 

system instead of a fixed ultrasonic sensor to 

measure distance in smart cars. It was shown that the 

developed system can effectively improve 

autonomous obstacle avoidance's speed, precision, 

and obstacle avoidance rate [7]. 

Laser-based detection systems are also showing 

remarkable developments in this area. The time-of-

flight laser receiver introduced by Ahola & Myllylä 

(1986) is used for object detection and distance 

measurement [8]. Zheng et al. (2021) developed 

laser-based human detection and obstacle avoidance 

algorithms for a robot that trans-ports materials 

along a reference path in a hospital environment [9]. 

Choon-Young Lee & Ju-Jang Lee (2000) proposed a 

hierarchical object recognition algorithm (HORA) 
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for an adaptive cruise control system to filter out 

spurious detections and maintain the distance to the 

target vehicle. Also, with this algorithm, the 

movements of obstacles were detected, and their 

position changes were monitored [10]. 

Komarizadehasl et al. (2022) showed that the 

accuracy obtained by combining a set of similar 

sensors is higher than the prediction of a single 

sensor [11]. In addition, this study showed that a 

cheap analog distance sensor, HC-SR04, has higher 

prediction accuracy than expensive time-of-flight 

(ToF) sensors (VL53L0X and VL53L1X). 

SLAM is comprised of building a map of 

environment while simultaneously positioning the 

mobile robot inside the built map [12]. Some early 

works on SLAM problem use ultrasound sensors 

[13, 14], while more recent works mostly use some 

kind of laser range sensors [15-17]. 

An important problem for mobile robots which 

involves SLAM as a part is active SLAM or A-

SLAM for short. In A-SLAM, a mobile robot not 

only estimates surrounding map and its own position 

but at the same time controls its actions actively in 

order complete one or several tasks [18,19]. Most of 

recent works on A-SLAM utilize Lidar as main 

sensor [20-32].            

For SLAM applications, a basic range measurement 

function with four types of measurement errors can 

be used to strongly represent sensor model: small 

inherent Gaussian measurement noise, errors due to 

unexpected objects which are closer than object of 

interest, errors due to complete failure to detect 

objects and random noise which cannot be explained 

deterministically [33].  

In this study, mathematical functions of sensor 

models are explained and parameters are estimated 

for low-cost sensors for mobile robotics 

applications. A particle swarm optimization (PSO) 

algorithm is used to find the best parameters in 

experimental measurements at different distances.    
 

2. Material and Methods 

 
The STM32F407VG Discovery development kit, 

shown in Figure 1, was used to collect sensor data 

and transfer it to the computer. This kit includes a 

168 MHz, 32-bit ARM-based STM32F407 

microcontroller with floating-point unit (FPU) 

support. The development board features one mini-

USB and one micro-USB port, which are used for 

programming, application communication, and 

debugging. The board has 4 USART (Universal 

Synchronous/Asynchronous Receiver Transmitters) 

and 2 UART (Universal Asynchronous Receiver 

Transmitters) units for serial communication.  

In this study, the UART2 unit was used for serial 

communication, with PA2 and PA3 pins assigned as 

transmit (Tx) and receive (Rx) pins, respectively. 

The connection to the PC was established using a 

USB-RS232 converter. 

 

 
Figure 1. STM32f407VG Discovery kit. 

 

Serial communication was performed at 115200 bps 

baud rate, with 8-bit data length, one stop bit, and no 

parity bit. STM32CubeIDE program was used to 

program the Stm32F407 microcontroller. The 

program is available free of charge. I2S 

communication was used for laser sensor 

measurements. For the ultrasonic sensor, digital 

inputs and outputs were used with two timers. 

 
2.1 Ultrasonic Range Sensors 

 

Two type of range sensors used in mobile robotic 

applications: ultrasonic and laser. Ultrasonic range 

sensors are based on sound waves and measuring the 

time-of-flight passing in between transmission of 

sound wave and detection of reflected wave from 

object of interest. Laser range sensors work on a 

similar principle of time-of-flight measurement, but 

instead of sound, they use light in the form of a laser. 

Each sensor has its own advantages and 

disadvantages; however, laser sensors are generally 

more accurate but also more expensive. 

Ultrasound range sensors transmit a modulated 

sound wave and listen for the reflection of the 

modulated signal. Once the reflected wave is 

received, the time elapsed between transmission and 

reception is used to calculate the distance of the 

object of interest. In this study, a popular low-cost 

ultrasound sensor, namely HC-SR04, is used which 

is shown in Figure 2. The sensor has four pins, VCC, 

GND, TRIG and ECHO, where GND is common 

ground, VCC is 5 Volts power supply input, TRIG is 

the digital input signal to the sensor to trigger it to 

transmit ultrasound wave and ECHO is the sensor 

output signal. ECHO signal’s width is proportional 

to the distance measured so by measuring the width 

of this digital signal, distance measured is inferred 

by the computing circuitry of mobile robot. These 

four pins can be connected to either microprocessor-

based computing circuitry or FPGA 
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 Figure 2. A popular low-cost ultrasound sensor: HC-

SR04. 

 

These four pins can be connected to either 

microprocessor-based computing circuitry or FPGA 

based computing circuitry. When interfacing with 

computing circuitry, it is important to use digital 

logic converters of 5 Volts to 3.3 Volts if needed, 

otherwise computing circuitry may be harmed. Some 

of the specifications of the ultra-sound sensor are as 

follows: 

 Power Supply: +5V DC 

 Quiescent Current: <2mA 

 Working current: 15mA 

 Effectual Angle: <15º 

 Ranging Distance: 2-400 cm 

 Resolution: 0.3 cm 

 Measuring Angle: 30º 

 Trigger Input Pulse width: 10uS 

 Dimension: 45mm x 20mm x 15mm 

 Weight: approx. 10 g 

 

2.2 Laser Range Sensors 

 

Laser range sensors’ working principle is similar to 

that of ultrasound range sensors but their 

performance is clearly superior. In this study, a low-

cost laser range sensor, namely VL53L0X, is used 

which is shown in Figure 3. 

 

 
Figure 3. A low-cost laser sensor: VL53L0X. 

 

The sensor has four pins, two of which are ground 

and 5 Volts power supply. The other two pins are for 

I2C communication, namely SCL and SDA pins. 

SCL is for clock and SDA is for data. I2C address 

can be programmable for the onboard chip on the 

sensor but for the development card it is fixed to 

0x29. Some specifications for the laser range sensor 

are as follows: 

 Power Supply: +3-5V DC 

 Working current: 40 mA 

 Effectual Angle: <25º 

 Ranging Distance: 3-200 cm 

 Dimension: 20 mm x 11 mm 

 Weight: approx. 1.5 g 

 Working temperature: -20C - +70C 

 Wavelength: 940 nm 

 

3. Theory 

 

The first part of the model is about measuring object 

of interest with small Gaussian noise. Mean of the 

Gaussian is at the true object location while the 

standard deviation depends on the precision of the 

sensor. The mathematical model of this part is 

represented as: 

 

𝑝1(𝑥, 𝑚) = {
𝜌𝑁(𝑧, 𝑧∗, 𝜎1

2) , 𝑖𝑓 0 ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥

0            , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (1) 

 

where z is measured distance, z* is true distance and 

σ1 is variance of sensor noise. This part is generally 

most probable for explaining measured value. 

The second part of the model is about missing object 

of interest and any other object in the field of view 

all together. This returns either maximum range of 

sensor or greater value and can be represented with 

the following equation: 

 

𝑝2(𝑥, 𝑚) = {
 1    , 𝑖𝑓 𝑧 = 𝑧𝑚𝑎𝑥

 0    , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
           (2) 

 

Third part of the model is about random 

unexplainable measurements. This can be modelled 

using uniform distribution with the following 

equation: 

 

𝑝3(𝑥, 𝑚) = {
 

1

𝑍𝑚𝑎𝑥
   , 𝑖𝑓 0 ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥

0      , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
           (3) 

 

Fourth and last part of the model is about measuring 

objects not existing in the map with measured 

distance nearer than object of interest and 

represented with the following equation: 

 

𝑝4(𝑥, 𝑚) =  {
𝜌𝛼𝑠ℎ𝑜𝑟𝑡𝑒−𝛼𝑠ℎ𝑜𝑟𝑡𝑧 , 𝑖𝑓 0 ≤ 𝑧 ≤ 𝑧∗

      0                  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (4) 
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where αshort is a parameter of the sensor. 

These four equations are mixed by constant 

coefficients defined by the parameters z1, z2, z3 and 

z4 where z1 + z2 + z3 + z4 = 1 and final mathematical 

model of the sensor is given by the equation: 

 
𝑝(𝑧, 𝑚) =  𝑧1 ∗ 𝑝1(𝑥, 𝑚) + 𝑧2 ∗ 𝑝2(𝑥, 𝑚) + 𝑧3 ∗

𝑝3(𝑥, 𝑚) + 𝑧4 ∗ 𝑝4(𝑥, 𝑚)           (5) 
 

So, the mathematical model of the sensor is 

represented by an equation with 6 independent 

parameters namely σ1, z1, z2, z3, αshort and z4. Any 

range sensor with the assumptions above can be 

represented with this mathematical model. 
There are six parameters to be found for each sensor 

as explained in the section above. In order to fit the 

mathematical function representing the sensor 

models to experimental results, a popular iterative 

optimization algorithm, namely particle swarm 

optimization (PSO), is used since it proved its 

credibility in various optimization applications [34-

40]. 

PSO is an iterative optimization algorithm inspired 

from movements of colonies of animals in nature 

[41]. It is utilized in various systems, including 

mobile robot systems [42]. Candidates of optimum 

parameter values are represented by particles in 

parameter space. Each particle has a position and 

velocity at each epoch of iteration represented by xi 

and vi, respectively. Position update of each particle 

is simple as shown in equation 6 below. 

 
𝑥𝑖[𝑛] = 𝑥𝑖[𝑛 − 1] + 𝑣𝑖[𝑛]           (6) 

 

where n is the epoch number. 

 

Velocity update of each particle is done using three 

sources of information:  

 Particle’s previous velocity; 

 Particle’s known optimum point upto that 

iteration; 

 Swarm’s known optimum point upto that 

iteration. 

 

Each source of information is multiplied by a scalar 

number and added to obtain the new velocity of the 

particle as shown in Equation [7] below: 

 
𝑣𝑖[𝑛] = 𝑐1𝑣𝑖[𝑛 − 1] + 𝑐2𝑝𝑖[𝑛 − 1] + 𝑐3𝑔𝑖[𝑛 − 1]      (7) 
 

where pi is particle’s known optimum point up to 

current iteration, gi is swarm’s known optimum point 

up to current iteration and c1, c2 and c3 are scalar 

values specific to application. 

In order to use the sensor measurements in PSO 

algorithm, a histogram is obtained for each real 

object distance. After the histogram is obtained, a fit 

score is calculated for each parameter point and 

input to the PSO algorithm in order to search for the 

optimum value.  

 

4. Results and Discussions 
 

Measurements were taken for 17 different distances, 

ranging from 2 cm to 150 cm. The TOF sensor is 

unable to make accurate measurements at distances 

exceeding 150 cm. Table 1 is ultrasonic sensor 

parameter.  It is observed that both sensors are quite 

precise but ultrasound sensor has some short 

measurements for some distances. This can be due to 

the crosstalk between the ultrasonic transmitter and 

receiver, which is common in ultrasonic sensors. 
Table 2 is laser sensor parameter. 

 

Table 1. Ultrasonic Sensor Parameter  

(cm) 1. 2. 3. 4. 5. 6. 

2 <0,001 1 0 0 0 0 

5 <0,001 1 0 0 0 0 

10 <0,001 1 0 0 0 0 

20 <0,001 1 0 0 0 0 

30 <0,001 1 0 0 0 0 

40 <0,001 1 0 0 0 0 

50 <0,001 0,99506098 0 0 0,00493902 0 

60 <0,001 0,98499737 0 0 0,01500263 0 

70 <0,001 0,97935834 0 0 0,02064166 0 

80 <0,001 0,98039773 0 0 0,01960227 0 

90 <0,001 0,97497832 0 0 0,02502168 0 

100 <0,001 0,97415114 0 0 0,02584886 0 

110 <0,001 0,96545862 0 0 0,03454138 0 

120 <0,001 0,9649951 0 0 0,0350049 0 

130 <0,001 0,9599992 0 0 0,0400008 0 

140 <0,001 0,95521914 0 0 0,0447809 0 

150 <0,001 0,95495903 0 0 0,04504097 0 
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Table 2. Laser Sensor Parameter  

(cm) 1. 2. 3. 4. 5. 6. 

2 <0,001 1 0 0 0 0 

5 <0,001 1 0 0 0 0 

10 <0,001 1 0 0 0 0 

20 <0,001 1 0 0 0 0 

30 <0,001 1 0 0 0 0 

40 <0,001 1 0 0 0 0 

50 <0,001 1 0 0 0 0 

60 <0,001 1 0 0 0 0 

70 <0,001 1 0 0 0 0 

80 <0,001 1 0 0 0 0 

90 <0,001 1 0 0 0 0 

100 <0,001 1 0 0 0 0 

110 <0,001 1 0 0 0 0 

120 <0,001 1 0 0 0 0 

130 <0,001 1 0 0 0 0 

140 <0,001 1 0 0 0 0 

150 <0,001 1 0 0 0 0 

 

5. Conclusions 

 
This study estimates the parameters of sensor models 

for low-cost ultrasonic and laser ranging sensors 

suitable for mobile robotics applications. The 

mathematical functions of sensor models with 

relevant parameters to be determined are explained. 

A particle swarm optimization (PSO) algorithm is 

used to find good parameters from experimental 

measurements. Experiments are conducted for 

obstacles of different sizes at various distances. 

Note that experimental results show the precise 

nature of both ultrasonic and laser sensors but laser 

sensor is slightly more reliable. As future work these 

sensors are to be used in real mobile robotic 

experiments. 
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