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Abstract:  
 

MPTCP is rapidly emerging as one of the most advanced networking protocols. 

Standardized by the IETF as an extension of TCP, it enables seamless communication 

across multiple interfaces from source to destination. Despite its potential, existing 

multipath congestion control mechanisms face significant challenges due to the diverse 

QoS characteristics of heterogeneous interfaces. While recent algorithms primarily 

emphasize enhancing the growth dynamics of the congestion window (CWND), the 

reduction mechanisms remain largely overlooked. Furthermore, conventional 

congestion control approaches often rely on manual adjustments, which are insufficient 

in highly dynamic network environments. Given the demonstrated success of machine 

learning algorithms across industries such as IoT, video streaming, and autonomous 

vehicles, this study introduces the Deep Deterministic Policy Gradient Multi-Path 

(DDPG-MP) framework. This innovative approach dynamically optimizes congestion 

control using a balancing factor, enabling adaptive and efficient performance in 

multipath networking environments. 

 

1. Introduction 
 

Bluetooth, Wi-Fi, and 4G/5G are integral 

communication interfaces in contemporary devices. 

However, the conventional Transmission Control 

Protocol (TCP) operates over a single interface, 

resulting in suboptimal utilization of network 

resources [1]. To address this limitation, the 

Internet Engineering Task Force (IETF) introduced 

the Multipath TCP (MPTCP) standard. MPTCP 

extends the capabilities of traditional TCP by 

enabling simultaneous utilization of multiple 

interfaces for a single application, thereby 

improving network robustness, efficiency, and 

overall performance [2]. 

The primary approach to designing and 

implementing multipath communication, which has 

garnered considerable attention in recent years, is 

congestion control. Among the proposed methods 

for MPTCP congestion control is the Linked 

Increases Algorithm (LIA). LIA [3], the default 

congestion control mechanism in MPTCP, 

evaluates available interfaces based on metrics like 

round-trip time (RTT) and packet loss. However, 

LIA's behavior is relatively aggressive compared to 

single-path TCP (SP-TCP), prompting the 

development of alternative algorithms such as 

OLIA [4], BALIA [5], and DLIA [6] to improve 

efficiency and fairness. These algorithms are 

fundamentally based on the Additive Increase 

Multiplicative Decrease (AIMD) principle, which 

serves as the backbone of TCP congestion control. 

Unlike DLIA, most modern algorithms focus on 

expanding mechanisms derived from traditional 

TCP approaches. The congestion window (CWND) 

plays a vital role in maximizing bandwidth 

utilization and shows a strong correlation with 

packet loss. A larger CWND generally leads to 

better bandwidth usage over time. Ideally, the 

CWND after a packet loss event should be close to 

its pre-loss value to ensure optimal performance. 

However, conventional methods that halve the 
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CWND upon packet loss often reduce it to a 

suboptimal size, leading to inefficient utilization of 

network resources. [7] He mostly focused on 

fairness and how it would be influenced. He 

extends fairness from a single road to multiple 

paths. [8] has concentrated on coupled congestion 

control algorithms. 

  

 
Figure. 1. MPTCP connections from source to 

destination. 

 

Figure 1 depicts the simple architecture of the 

MPTCP. There are two flows that connect the 

source and destination. One flow will send data 

over one interface, such as LTE, while another 

interface will transfer data over another interface, 

such as Wi-Fi. 

Raiciu et al [9] established three fundamental 

design objectives for the MPTCP congestion 

control algorithm to achieve enhanced performance 

and equitable resource utilization: 

1. Maximizing Throughput: A multipath flow 

should deliver performance that is at least 

equivalent to a single-path flow on the most 

optimal available paths. This ensures an economic 

rationale for adopting multipath transmission. 

2. Ensuring Non-Disruption: A multipath flow 

must not consume more bandwidth on any 

individual path than a single-path flow would on 

that route. This guarantees minimal interference 

with other network flows. 

3. Congestion Balancing: Provided the first two 

criteria are met, a multipath flow should strive to 

redistribute traffic away from heavily congested 

paths, promoting efficient use of network resources. 

 

2. Back Background and Problem 

Formulation 

 
2.1 Background 

 

MPTCP has been widely studied to develop 

efficient congestion control mechanisms. In [7], an 

uncoupled congestion control (CC) approach was 

introduced, where each flow adjusts its CWND 

independently, without awareness of other flows. 

However, this method does not address the problem 

of traffic redistribution from highly congested paths 

to less congested ones. To tackle this limitation, [8] 

proposed a fully connected model, which resolved 

the initial concern but led to a new issue: 

continuous traffic shifting between flows. The LIA 

approach was then introduced to address this 

challenge, though it tends to exhibit greater 

aggressiveness compared to single-path TCP.As 

shown in Figure 2, the MPTCP protocol stack is 

divided into sub-flows. It can transport data over 

several flows, but from outside the application, it 

appears to be a single flow. The transport layer has 

two internal layers: the MPTCP connection level 

and the sub-flow level. 

  

 
Figure. 2.  Protocol stack of MPTCP. 

 

The limitations of the LIA approach were identified 

by Khalili [3], who observed its aggressive 

behavior when compared to single-path TCP. To 

address this, he proposed Opportunistic LIA 

(OLIA) as a potential solution [4], demonstrating 

that MPTCP could achieve Pareto optimality. 

However, OLIA also faces challenges when 

network conditions fluctuate. To mitigate these 

issues, BALIA [5] was introduced, offering an 

improved approach. Building on this, DLIA [6] 

further proposed a method to reduce congestion 

based on dynamic value. 

Farinaz et al. delved deep into the world of 

MPTCP, exploring the intricate dynamics of both 

coupled and uncoupled congestion control (CC) 

algorithms. His research redefined the concept of 

fairness, examining it not just at the flow level but 

also across the entire network. With a sharp focus 

on performance, he meticulously analyzed how 

coupled CC algorithms adapt and thrive in diverse 

network conditions, uncovering insights that bridge 

efficiency and equity in data flow management 

[10]. According to Wei et al., the current 

congestion control mechanism is suboptimal since 

it employs different congestion controls at various 

bottlenecks. They did this by using loss correlation 

and delay correlation between two flows. He has 

suggested utilizing an explicit congestion 

notification technique to discover common 

bottlenecks [11].Wenzhong et al. explored the 

challenges of congestion control arising from path 

heterogeneity and proposed a learning-based 
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framework to address these complexities. Their 

solution employs machine learning algorithms [12] 

to adaptively manage the diverse characteristics of 

network paths. However, the approach does not 

account for the critical aspect of TCP-friendliness, 

leaving room for further refinement. Conducted a 

comprehensive evaluation of three congestion 

control algorithms to determine their suitability for 

high-speed railway networks [13-15]. The study 

examined the performance of both coupled and 

uncoupled congestion control mechanisms. The 

findings highlighted that among the evaluated 

approaches, equally weighted congestion control 

achieved the most favorable results, demonstrating 

its effectiveness in such environments. Soheil at el 

[16] noted the shortcomings of stale learning-based 

congestion control and suggested a hybrid approach 

to deal with the challenges he saw, such as 

overhead, network performance issues, and 

convergence problems. 

Kefan et al. [17]. The current wireless/wired 

scenarios are becoming increasingly complex; the 

assumptions offered by existing tcp variations may 

no longer be valid, hence we developed a model-

free congestion control technique based on Deep 

Reinforcement Learning. The model will learn from 

its previous experiences in the form of measurable 

attributes. Maliha et al. [18] provided an analysis 

and comparison of traditional and contemporary 

methods for congestion control and scheduling 

mechanisms in MPTCP. While MPTCP has 

demonstrated superior performance compared to 

TCP, it also has its own limitations. To address 

these challenges, the study explored and proposed 

potential solutions for improving MPTCP.Taeyun 

et al. [19] highlighted the inefficiency of existing 

congestion control techniques in addressing the 

demands of IoDST, where reliable communication 

is critical. Traditional algorithms regulate data 

transmission rates using predefined rules, which 

limit their adaptability and effectiveness. To 

enhance throughput and optimize data transfer in 

IoDST, the study proposed an innovative and 

intelligent communication approach. According to 

Shiva et al. [20], the current implementations of 

MPTCP, such as LIA, OLIA, and BALIA, are 

solely focused on congestion control and do not 

incorporate packet scheduling. However, Shiva has 

suggested Deep Q learning, which can handle 

scheduling and, in the event of congestion, regulate 

it. He uses the Policy Gradient technique as his 

methodology. 

 

2.2 Contribution  

 

Identify applicable sponsor/s here. If no sponsors, 

delete this text box (sponsors). 

Building on the prior analysis, our approach 

prioritizes efficient resource utilization by 

implementing a dynamic reduction factor for the 

CWND during packet loss events. This method 

emphasizes maintaining the CWND close to its 

optimal value, resulting in enhanced throughput and 

more effective bandwidth utilization. 

 

3. Deep Reinforcement Algorithm 

 
3.1 Markov Decision Process  

 

This section introduces the development of the 

system's learning process, beginning with the 

formulation of a Markov Decision Process (MDP). 

We then employ the Deep Deterministic Policy 

Gradient (DDPG) algorithm to compute the optimal 

congestion balancing factor. Traditional congestion 

control techniques rely heavily on complex, manual 

configurations, often resulting in inefficient 

resource utilization while attempting to maintain 

the CWND at its optimal value. Drawing 

inspiration from the advancements in machine 

learning for congestion control, this work adopts a 

more efficient approach. By leveraging Deep 

Reinforcement Learning, we dynamically manage 

the CWND reduction factor, optimizing the 

balancing factor to achieve adaptive and resource-

efficient congestion control. 

  

 
Figure. 3. Markov Decision Process model. 
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At each step, as illustrated in Figure 3, the system 

diligently monitors the environmental state St and 

computes the congestion management balancing 

factor based on the proposed methodology. By 

leveraging this balancing factor, the system 

dynamically adjusts and reduces the CWND, 

ensuring an optimized response. Upon execution of 

this action, the intelligent system is immediately 

rewarded. The congestion window is characterized 

through parameters including the current CWND, 

historical CWND, prior threshold, congestion 

ratios, and threshold metrics, providing a 

comprehensive depiction of network behavior. 

 

Definition: the components of the Intelligent 

system 

        State: The state represents the current network 

conditions: 

S = {Bandwidth (B), Delay (D), Loss Rate (L), 

CWND_curr, CWND_prev, U, Thresh_prev} 

Action (A): 

The action adjusts the Congestion Window 

(CWND) using the balancing factor θ: 

A=θ 

Reward (R): 

The reward incentivizes high throughput, low 

delay, and low packet loss: 

 

 R = Throughput - α₁  ⋅ Delay - α₂  ⋅ Loss Rate 

 

Where α1 and α2  are weighting factors. 

 

3.2 Deep Deterministic Policy Gradient 

 

A continuous action space is crucial for effectively 

addressing congestion control in real-world 

environments. Recent advancements in Deep 

Reinforcement Learning (DRL) algorithms have 

showcased significant success in tackling complex 

challenges across various domains. In this research, 

we adopt the Deep Deterministic Policy Gradient 

(DDPG) methodology to compute the optimal 

balancing factor, facilitating rapid convergence to 

the ideal congestion window (CWND) value with 

precision and efficiency. 

  

 
Figure. 4. MPTCP topology used in the system. 

 

Figure 4 depicts a network having a source and a 

destination connected by two flows. Each flow has 

unique properties. This was the topology we 

utilized throughout the experiment. TCP behavior 

indicates that consecutive congestion events are 

likely to occur when network conditions change. In 

such scenarios, the Congestion Window (CWND) 

must be rapidly reduced to identify a new optimal 

CWND that aligns with the altered network state. 

Conversely, in the presence of congestion, TCP 

must ensure efficient bandwidth utilization to 

achieve an optimal CWND. The congestion 

window plays a critical role in determining the 

updated CWND. To address these challenges, we 

propose a Reinforcement Learning-based Balancing 

Factor, termed the Optimized Balancing Factor 

for MPTCP Congestion Control (OBF2-

MPTCP-CC-DDPG). This approach leverages 

Deep Reinforcement Learning to dynamically 

adjust the CWND, optimizing MPTCP performance 

in dynamic network environments. 

Furthermore, for the increase mechanism, we 

employ the default MPTCP CC method, LIA.  

For each sub-flow r, we raise the CWND wr per 

ACK by 
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Additionally, we suggest reducing wr after every 

loss occurrence by multiplying by a balancing 

factor. For example, on each sub-flow wr, on each 

loss event, 
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1. Compute α:  

 

prev

curr

CWND

CWND
           (2) 

2. Compute β:  

 

      

prev

curr

T

CWND

hresh
             (3) 

 

3. Compute γ:  

       (4) 

4. Utilization Ration U:  

 

 
Bandwidth Available

Throughput Achieved
U     (5) 

 

5. Compute θ: 
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6. Update wr: 
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Figure. 5. Flow representation of DDPG algorithm. 

 

As shown in Figure 5, the intelligent system 

transfers the data to the replay buffer after 

evaluating the variables and monitoring the 

environment's state. The input field feeds data to 

both the actor and critic networks. The actor adjusts 

the CWND based on the balancing factor, 

influencing the next state through its actions. 

Meanwhile, the critic evaluates the agent's actions, 

assigning rewards positive or negative accordingly. 

Algorithm 1 Deep Deterministic Policy Gradient 

(DDPG) Algorithm for Congestion Control using 

Balancing Factor. 

1. Initialization: 

   - Initialize the Actor network μ(s) and Critic 

network Q (s, a) with random weights. 

   - Initialize target networks μ'(s) and Q'(s, a) as 

copies of the Actor and Critic networks. 

   - Initialize the replay buffer R. 

   - Set hyperparameters: learning rates, discount 

factor γ, target update rate τ, and exploration noise. 

2. Training Loop: 

   For each episode: 

   1. Reset the environment and observe the initial 

state S. 

   2. For each step within the episode: 

 

      - Select an action A: 

        A = μ(s) + exploration noise 

 

      - Execute the action and observe the next state 

S', reward R, and any packet loss. 

 

      - Compute the balancing factor θ: 

 

a) Compute α:  

 

prev

curr

CWND

CWND
  

     

b) Compute β:  

 

prev
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T

CWND

hresh


 
     

c) Compute γ:  

 
   

  

Utilization Ratio (U) (Ratio of achieved throughput 

to available bandwidth): 

 

Bandwidth Available

Throughput Achieved
U  

  

Ensure 0 ≤ U ≤ 1, i.e., the value should be between 

0 and 1. 

d) Compute θ: 
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
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
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2
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wr
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- Store the transition (S, A, R, S') in the replay 

buffer. 

- If the replay buffer contains enough samples: 

 

a) Sample a mini-batch of transitions (S, A, R, 

S') from the replay buffer. 

b) Compute the target value y: 

 
  '',''. SSQRy   

  

c) Update Critic Network:  

a. Minimize the loss: 

 

   
2

,
1

ASQy
N

L  

  

d) Update Actor Network  

a. Using the Policy gradient  

 

   SASQ
N

JV a 

   ,

1  

  

Perform a soft update of the target networks: 

e) Perform Soft Updates: 

a. Update Critic Target Network: 

 
  '' .1. QQQ    

  

b. Update Actor Target Network  

 
  '' .1.     

  

Repeat Until Convergence: 

 

- Continue for a fixed number of episodes or until 

the policy achieves optimal performance. 

 

4. Performance Eveluation 

 
4.1 Emulation scenario and setup 

 

We integrated the OBF2-MPTCP-CC-DDPG 

algorithm into the NS3 simulator and the Linux 

kernel for comprehensive evaluation. The algorithm 

was assessed and compared against LIA, OLIA, 

BALIA, and DLIA in two distinct emulation 

scenarios. In the first scenario, the evaluation 

focused on OBF2-MPTCP-CC-DDPG's utilization 

of the underlying network, while the second 

scenario assessed its fairness compared to other 

congestion control algorithms (CCAs). Two sub-

flows were considered, designated as path 1 and 

path 2. Metrics such as CWND, alpha, theta, and 

gamma were captured using a TCP probe. 

Additionally, both the total number of retransmitted 

segments and the segment distribution across sub-

flows were monitored using ifstat and netstat tools. 

The scheduling algorithm employed is based on the 

"Design and Implementation of Dynamic Packet 

Scheduling with Waiting Time Aware (DPSW2A) 

[14]."The emulator experiment was executed over a 

duration of 360 seconds. For each CCA type, a 

minimum of 30 emulation runs were conducted for 

every scenario to ensure comprehensive evaluation. 

For author/s of only one affiliation (Heading 3): To 

change the default, adjust the template as follows. 

 

5. Results and discussion 
 

We conducted extensive emulation experiments to 

evaluate the performance of the proposed OBF2-

MPTCP-CC-DDPG algorithm. The values of γ and 

U were derived based on the dynamically obtained 

α and β parameters during the controlled tests. Both 

α and β exhibited variability across experiments, 

with other parameters also fluctuating dynamically 

throughout each test. The γ and U parameters play a 

critical role in preventing the congestion window 

from dropping to the current CWND value. 

We are currently evaluating the performance of 

OBF2-MPTCP-CC-DDPG against advanced 

congestion control algorithms such as LIA, OLIA, 

BALIA, and DLIA. The "Aggregate Benefit 

(Ag_Bf)" metric, as defined in [15], has been 

utilized for this comparison. 
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 Figures 6, 7, and 8 present a comparison between 

the proposed methodology and state-of-the-art 

algorithms. Experimental results demonstrate that 

the proposed congestion control algorithm 

outperforms existing methods across all evaluated 

metrics, including throughput, aggregate benefit, 

and Jain's Fairness Index. 

 
Figure. 6. Throughput performance of LIA, OLIA, 

BALIA, DLIA & Proposed CC algorithms. 
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Figure. 7. Jain’s Fairness Index performance of CC 

algorithms. 

  

 
Figure 8.  Performance of state-of-the-art and proposed 

algorithms Aggregation Benefit. 

 

6. Conclusion 

 
In this work, we introduce a novel congestion 

control technique leveraging a machine learning 

model, designed to seamlessly integrate with 

existing MPTCP implementations. By dynamically 

adjusting the congestion window (CWND) 

reduction factor based on real-time network 

metrics, we aim to approach an optimal value 

without compromising the performance benefits of 

the system. The proposed OBF2-MPTCP-CC-

DDPG method demonstrated significant 

improvements in throughput and fairness during 

emulation, outperforming classical congestion 

control algorithms such as LIA, OLIA, BALIA, and 

DLIA, while preserving their key advantages. This 

methodology is adaptable to any congestion control 

framework. 

Given the inherently dynamic nature of modern 

networks, further measurements are required to 

identify the most optimal values. Future work will 

extend the proposed approach by incorporating 

additional metrics to enable a more comprehensive 

comparison with state-of-the-art methodologies, 

providing deeper insights into its potential for 

broader applicability. 
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