
 

 
 

Copyright © IJCESEN 

 

International Journal of Computational and Experimental 

Science and ENgineering 

(IJCESEN) 
 

Vol. 11-No.2 (2025) pp. 1993-2017 
http://www.ijcesen.com 

ISSN: 2149-9144 

 Research Article  
 

 

A Hybrid Framework for Robust Anomaly Detection: Integrating Unsupervised 

and Supervised Learning with Advanced Feature Engineering 
 

Girish Reddy Ginni1*, Srinivasa L. Chakravarthy2 

 
1Department of Computer Science Engineering, GITAM University, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra 

Pradesh-530 045. 
* Corresponding Author Email: girishloshankar@gmail.com - ORCID: 0009-0005-5242-8839    

 

2Department of Computer Science and Engineering, College GITAM University, Gandhi Nagar, Rushikonda, 

Visakhapatnam, Andhra Pradesh-530 045. 

Email: chakri.ls@gmail.com- ORCID: 0000-0001-9141-4863 

 
Article Info: 

 
DOI: 10.22399/ijcesen.1383 

Received : 03 January 2025 

Accepted : 16 March 2025 

 

Keywords : 

 
Hybrid Anomaly Detection, 

Unsupervised Learning,  

Supervised Learning,  

Feature Engineering,  

Outlier Detection. 

Abstract:  
 

Finding anomalous data is essential in various applications, from cyber security to 

healthcare to industrial monitoring. Traditional methods- unsupervised or supervised—

are far from straightforward; unsupervised methods are notoriously plagued by high 

false favorable rates and unclear distinction boundaries, while supervised methods tend 

to rely on a great deal of labeled data, often in limited supply or highly imbalanced. 

Indeed, these problems call for a unified approach that takes advantage of the benefits 

of both paradigms for more robust anomaly detection. In this work, we develop a hybrid 

outlier detection framework combining several unsupervised anomaly scoring models 

(Isolation Forest, Local Outlier Factor, and One-Class SVM) and XGBoost and 

Logistic Regression as a supervised classifier. Instead, we combine the proposed 

algorithm with advanced feature engineering techniques (e.g., topological space 

optimization) to extract informative features for our data representation. Our empirical 

studies of diverse benchmark datasets (Arrhythmia, Cardio, Letter, Mammography, 

MNIST, Satellite, and Speech) indicate that the hybrid model consistently shows a 

significant improvement over any single method. Our framework consistently reduces 

false positives and false negatives and is more precise; recall, F1-score, and ROC-AUC 

are the highest scores for quantitative comparison. We demonstrate the usefulness of the 

proposed framework by enabling it to handle high-dimensional, imbalanced datasets 

while leading to meaningful detection results in real-world settings. Establishes a new 

state-of-the-art performance in anomaly detection while also supplying an approach that 

is scalable and versatile for complex data environments and forming a basis from which 

to build toward future integrated anomaly detection systems. 

 

1. Introduction 
 

Due to the importance of detecting rare events or 

outliers from high-dimensional data in maintaining 

system availability and decision-making, anomaly 

detection has become a key research topic in many 

application areas, including Cybersecurity, medical 

diagnostics, and remote sensing. Conventional 

approaches are primarily based on unsupervised or 

supervised methods, each with drawbacks. For 

example, unsupervised methodologies like Isolation 

Forest and Local Outlier Factor can suffer from 

high false positives [1,2]. At the same time, 

supervised methods like XGBoost and Logistic 

Regression rely on labeled data, which is often 

unavailable in the real world. Recently, this idea 

has attracted the attention of researchers in the 

community and has led to the design of hybrid 

methods that combine the advantages of both 

paradigms to obtain a more reliable detection 

performance [3,4]. 

To overcome these challenges, the present research 

proposes a new hybrid outlier detection algorithm 

that shows a novel integration of unsupervised 

anomaly scoring with supervised classification and 

effective feature engineering techniques. Thus, this 

research aims to propose an integrated framework 

that combines the attractive advantages of various 

models, thereby increasing detection accuracy and 

decreasing the number of false positive and false 

http://dergipark.org.tr/en/pub/ijcesen
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negative results. This approach features a novel 

dynamic feature selection paradigm based on 

topological subspace optimization. This refined 

ensemble strategy combines anomaly scores of 

different unsupervised methods and statistical 

performance measures to validate robustness. The 

research contributions are extensive: the proposed 

model is assessed on a variety of benchmark 

datasets, which includes Arrhythmia, Cardio, 

Letter, Mammography, MNIST, Satellite, and 

Speech, achieving better performance than the 

state-of-the-art methods. Furthermore, the hybrid 

approach dramatically improves detection with 

extensive experiments and statistical analyses and 

helps gain valuable insights for practical 

implementations. 

We summarize this paper as follows. In Section 2, 

we provide a comprehensive literature survey 

reviewing related sources and existing methods for 

anomaly detection methods, leading to the 

conclusion of remaining gaps in current 

functionality. In Section 3, we propose our 

methodology by explaining how we combine 

unsupervised and supervised models with feature 

engineering. Experimental results with performance 

on several datasets using precision, recall, F1-score, 

and ROC-AUC are in Section 4. Section 5 presents 

the implications of the findings and limitations of 

the present study, and Section 6 ends the paper and 

provides future research directions. Enabling this 

structured methodology, the Research tries to prove 

the gap between existing methods and to conclude a 

more Policy-level solution and Scalable Anomaly 

Detection Framework. 

 

2. Related Work 
 

This survey of contemporary methods for hybrid 

and deep learning enhances a literature review of 

more hybrid and deep learning-based anomaly 

detection methods, identifying gaps in the current 

addiction literature and positioning a need for 

developing our framework. Jeffrey et al. In [1], it 

introduces a hybrid anomaly detection model for 

Cyber-Physical Systems (CPS) based on a mixture 

of machine learning, threshold-based & signature-

based techniques to increase the efficiency and 

accuracy of threat detection. Yaro et al. For outlier 

detection, they compared three hybrid scale 

estimators (weighted, maximum, and average) for 

the mZ-score method and found that the weighted 

hybrid approach is the most successful 

[2].HVK/HVA-HEM hybrid framework for river 

discharge prediction combines several models to 

get better results than current approaches and can 

potentially be improved even further by 

incorporating climatic factors. Hu et al. [4] ASOD 

technology improves online anomaly detection in 

stream data by employing adaptive algorithms and 

dynamic context management, surpassing previous 

approaches regarding accuracy and stability. Future 

research will concentrate on enhancing multi-

variate time series identification and developing a 

more profound comprehension of abnormalities. 

Stehle et al. [5] provided scalable anomaly 

detection on HPC clusters; DeepHYDRA combines 

deep learning and DBSCAN. This allows for real-

time detection with minimal resource consumption 

and addresses dimensionality concerns. Future 

goals will include further customization and 

optimization for different system settings. 

Alsmadi et al. [6] The TCLD method solves outlier 

and topic count problems to improve topic 

modeling for short texts. It performed better in 

clustering, but complicated data requires tuning. 

Nssibi et al. [7], the iBABC-CGO method improves 

gene selection and increases accuracy and 

efficiency in high-dimensional datasets by 

combining algorithms for chaotic game 

optimization with artificial bee colonies. Future 

work aims to enhance initialization and apply it to 

more domains. Gouranga and Rajiv [8] suggested 

that the hybrid approach raises the AUC score of 

contextual outlier identification by 22–45% by 

fusing neural networks with conventional methods. 

Adaptive ensemble learning will be a part of future 

work. Xie and Huang [9] proposed a hybrid 

sampling technique that uses Mahalanobis distance 

SMOTE-ENN and Random Forest to identify credit 

card fraud. This approach enhances accuracy by 

22–45%. Future studies will concentrate on neural 

network integration for broader applications. Jiang 

et al. [10] improved river pollution identification; 

the study creates a hybrid anomaly detection 

framework that combines SVDD and VMD-BPNN. 

It performs better than alternative approaches, and 

future research suggests using deep learning for 

more accurate forecasts. 

Princz et al. [11] compared and contrasted several 

machine learning models for investigating anomaly 

detection in binary time series. Future studies will 

improve the size of the dataset, the thresholds, and 

the immediate execution. Alghushairy et al. [12] 

introduced an improved anomaly-based GNB and 

SVM-based network outlier detection system 

(NODS). Future research will examine deep 

learning approaches to enhance detection abilities. 

Ferreira et al. [13] evaluated supervised and 

unsupervised machine learning techniques for 

textile fault identification using autoencoders. 

Subsequent investigations will focus on improving 

unsupervised methods and evaluating substitute 

approaches. Montalvo et al. [14] offered a hybrid 

anomaly detection technique for Internet of Things 
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devices to decrease bandwidth usage and increase 

security. Additionally, it seeks to enhance and 

better analyze the data. Ali et al. [15] enhanced 

reservoir characterization and reduced expenses by 

reconstructing density logs from irregular healthy 

data through supervised and unsupervised machine 

learning techniques. Projects, including regional 

applications and seismic integration, are coming up 

soon.  

Marques et al. [16] evaluated unsupervised outlier 

identification techniques against one-class 

classification to discover anomalies. Ensembles 

exhibit higher accuracy compared to both SVDD 

and GMM. We will continue to research 

combination tactics and variety in ensembles. Cui 

et al. [17] highlighted advances in unsupervised 

anomaly detection for Industry 4.0, stressing the 

benefits of deep learning over traditional methods 

and its data and efficiency constraints. Subsequent 

studies ought to enhance the generality of models 

and address dataset constraints. Islam et al. [18] 

proposed that the Credit Card Anomaly Detection 

(CCAD) model outperforms traditional methods in 

detecting anomalies in minority groups. Future 

work will explore deep learning methods using 

CCAD on several datasets. Samunnisa et al. [19] 

unique hybrid intrusion detection system effectively 

categorizes abnormalities associated with cloud 

computing. More research will enhance modeling 

methodologies to enhance detection accuracy and 

manage dynamic assault patterns. Kennedy et al. 

[20] enhanced this by adding an unsupervised fraud 

detection method that considers label accuracy and 

class imbalance, surpassing existing models. 

Additional studies will look at more datasets and 

baseline learners. 

Dash et al. [21] suggested an IQR-based 

winsorizing procedure for detecting outliers, which 

was followed by a TLBO-based model 

categorization of the data. Further research aims to 

investigate big data applications and enhance 

TLBO attributes. Koko et al. [22] suggested a 

method for identifying outliers in clustering-based 

dynamic selection (CBDS) that performs more 

accurately and efficiently than LSCP. Future 

research will examine more advanced grouping 

techniques and enhanced fusion techniques. Haque 

et al. [23] examined the benefits and limitations of 

using machine learning algorithms for Wireless 

Sensor Network (WSN) anomaly detection. Future 

studies will concentrate on large-scale network 

algorithm optimization and real-world assessment. 

Lee et al. [24] introduced a hybrid deep learning 

model that offers benefits over earlier techniques 

for anomaly identification in smart factories. 

Managing noisy data and improving model 

interpretability should be the main areas of future 

study. Savic et al. [25] proposed HUNOD, a hybrid 

unsupervised method that enhances tax fraud 

detection accuracy and interpretability by fusing 

clustering with representation learning. Future 

studies should increase the accuracy of labels. 

Velasquez et al. [26] formed a hybrid machine 

learning ensemble using LOF, OCSVM, and 

Autoencoder for Industry 4.0 real-time anomaly 

identification. Prospective investigations should 

focus on deep learning, retraining costs, and 

different fault classifications. Zheng et al. [27] 

proposed a hybrid method that blends deep neural 

networks with hyperspheres for high-dimensional 

anomaly detection. Future studies in similar settings 

will address the interference caused by unrelated 

features. Sakhnenko et al. [28] presented a hybrid 

classical-quantum autoencoder (HAE) for anomaly 

detection that combines quantum and classical 

models for improved performance. We will look at 

hybrid models and measuring techniques in further 

research. Karitonov et al. [29] evaluated eleven 

machine learning models, with KNN proving to be 

the most effective for manufacturing anomaly 

detection. Plans include collecting more data and 

analyzing previous logs. Fazlic et al. [30] 

introduced a hybrid anomaly detection method that 

integrates statistics, SOM, and LDA for real-time 

medical data. Stochastic Petri nets and genetic 

algorithms combined for optimization will be 

investigated further. Chander and Kumaravelan 

[31] examined the latest methods for detecting 

outliers in Wireless Sensor Networks (WSNs) 

while emphasizing the difficulties related to 

bandwidth, computing, and energy. Future research 

will focus on enhancing detection accuracy and 

addressing dataset variability. Zhou et al. [32] 

presented HAD-MDGAT, a hybrid anomaly 

detection model that combines MDA and GAT for 

enhanced multivariate time series analysis. The 

strategy improves accuracy over current approaches 

by addressing correlations in both space and time. 

Stability in GAN training and sliding window 

optimization will be investigated in further study. 

Thudumu et al. [33] looked at high-dimensional big 

data anomaly detection problems, emphasizing the 

shortcomings of existing methods and the need for 

new frameworks to improve performance and 

accuracy. These problems should be addressed in 

future research. Wang and Mao [34] proposed an 

ensemble-based approach to identify outliers in 

industrial systems without labeled data. One-class 

and multi-class classifiers are integrated to address 

real-world problems and the need for more 

research. Kurt et al. [35] proposed scalable and 

nonparametric methods for real-time anomaly 

detection in high-dimensional data. It addresses the 

shortcomings of traditional methods, including the 
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handling of non-stationary data. Song et al. [36] 

suggested that the three-phase HFS-C-P algorithm 

effectively handles high-dimensional issues by 

integrating several feature selection techniques. 

Reducing processing costs and improving 

clustering approaches should be the main goals of 

future development. Qaraad et al. [37] compared to 

current methods, the ENSVM model identifies 

appropriate gene subsets for cancer classification 

effectively. The interpretation of gene importance 

for cancer therapy will be the main focus of future 

research. Yuan et al. [38] presented an outlier 

identification technique (FIEOD) based on fuzzy 

information entropy (FIEOD), which outperforms 

classical methods on a variety of data types. 

Dynamic outlier identification will be investigated 

in future studies. Chen et al. [39] recommended that 

the LPPCA method improves high-dimensional 

anomaly detection by employing Locally Linear 

Embedding to improve outlier identification. Future 

efforts will primarily focus on adapting dynamic 

data flow. Qiao et al. [40] presented a novel 

OCSVM-based anomaly detection model for high-

dimensional data that outperforms current 

techniques in terms of efficiency and accuracy. 

Further investigation into applications is part of the 

work to come. Table 1 summarizes the literature's 

findings, while Table 2 presents the datasets used in 

prior research on outlier detection. The proposed 

hybrid framework leverages complementary 

strengths of unsupervised and supervised 

approaches, addressing high false favorable rates 

and data imbalance. Integrating advanced feature 

engineering and ensemble learning, our method 

significantly improves anomaly detection 

performance across diverse datasets.  

 

3. Proposed framework 
 

Figure 1 is overview of the proposed framework 

integrating supervised and unsupervised models for 

improved outlier detection accuracy and robustness. 

It starts from the data collection and preprocessing 

step, where it normalizes and standardizes raw 

datasets and splits them into Training and testing 

sets. Rescaling Features: These preprocessing steps 

are used for rescaling features, which prevent the 

models from biasing on high-range spread features 

and help the models get better performance overall. 

Then, feature engineering is applied to improve the 

presentation of data. Methods like TOS variance 

are employed to prune feature subsets to pump the 

model to the best-suited features. This step ensures 

that only such patterns with meaning are kept and 

that noise and redundancy in the dataset are 

reduced. The framework uses several unsupervised 

learning models: Isolation Forest, Local Outlier 

Factor, and one-class SVM. The dataset is 

examined independently by those models that 

generate anomaly scores differently. These 

unsupervised models are then used to create an 

extra feature set during the supervised learning 

phase (which entails classifiers like XGBoost and 

logistic Regression). By using labeled data and 

anomaly scores, these models bring enhancements 

in detection accuracy with reductions in false 

positives. 

Using supervised and unsupervised separately does 

not lead us to the best decision-making; as such, 

supervised and unsupervised ensemble models are 

hybrid, bringing the best of both worlds together. 

The detection ability is improved by combining 

both methods using an ensemble strategy. Its 

performance is compared with multiple baseline 

methods on different datasets, including ROC-

AUC, precision, recall, and F1-score. The last step 

is visualization and reporting, wherein the results 

are assessed against precision-recall curves and 

classical performance metrics. This reflects that the 

proposed model is efficient and has advantages 

compared to existing methods. Thus, this flexible 

framework can be used on other datasets/domains 

where anomaly detection is essential. 

 

3.1 Feature Engineering 

 

Feature engineering, as shown in Figure 2, is a 

crucial process that helps improve the quality of 

input features from the developed hybrid outlier 

detection framework. This starts with the raw 

dataset, which is preprocessed so that all features 

are normalized and standardized. So, this step is 

essential to remove bias from the model due to the 

difference in scale of features and help the model 

find the anomalies better. Specifically, the 

preprocessing step includes normalizing the dataset. 

Hence, all feature values are in a similar range, 

standardizing the data with a mean of 0 and a 

standard deviation of 1 and performing a train-test 

split, where the dataset is separated into the training 

and testing subsets. 

After preprocessing the data, two feature selection 

techniques (TOS_knn and TOS_variance) are 

applied to the data, and the feature space is reduced 

by maintaining the most informative attributes. 

TOS_knn is a topological subspace optimization 

approach that identifies features relevant to the data 

distribution using the k-nearest neighbors. This 

method retains the most essential features for the 

outlier detection task while removing redundant or 

irrelevant features. On the other hand, 

TOS_variance first selects features depending on 

their variance, force-feeding high-variability 

features and low-variance features through the  
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Table 1. Summary of Related Works on Outlier Detection Approaches, Techniques, and Limitation 

Reference Approach Technique Algorithm Dataset Limitation Summary 

[4] K-nearest 

neighbor 

approach 

Supervised learning 

techniques 

Random Cut 

Forest (RRCF) 

algorithm 

NAB datasets Future work will focus on 

anomaly interpretation 

and traceability issues in 

streaming data. 

[9] Machine 

Learning 

Mahalanobis 

Distance and 

SMOTE-ENN 

Hybrid Sampling 

Random Forest 

Algorithm 

Credit card 

fraud datasets 

(Kaggle) 

Future improvements 

include integrating neural 

networks and testing on 

other imbalanced datasets. 

[11] Machine 

Learning 

ML techniques ML algorithms Custom dataset Further research will 

optimize dataset sizes, 

fine-tune failure 

thresholds, and explore 

real-time implementation. 

[12] Min-max and 

Z-Score 

approaches 

Principal component 

analysis (PCA) and 

correlated features 

selection (CFS) 

techniques 

Support Vector 

Machine (SVM), 

Gaussian Naive 

Bayes (GNB), and 

Genetic 

algorithms 

NSL-KDD and 

CICIDS2017 

dataset 

Future work aims to 

incorporate deep learning 

models to enhance 

detection system 

capabilities. 

[14] Machine 

Learning 

Unsupervised 

learning and deep 

learning techniques 

Gaussian and 

One-Class 

Support Vector 

Machine (OSVM) 

algorithms 

EDS1 dataset An extensive power 

consumption analysis will 

optimize the method for 

different sensor data. 

[18] Ensemble 

Learning 

Ensemble learning 

techniques 

iForest algorithm CCF and 

CCDP dataset 

Future studies will apply 

the CCAD model to other 

datasets to validate 

robustness. 

[22] Clustering-

based 

dynamic 

selection 

(CBDS) 

Unsupervised 

machine learning 

techniques 

Bisecting K-

means algorithm 

Benchmark 

datasets 

Future research will 

address class imbalance to 

improve CBDS method 

performance. 

[26] Machine 

Learning 

Local Outlier 

Factor, One-Class 

Support Vector 

Machine, and 

Autoencoder 

Box-plots, Blum 

Floyd Pratt Rivest 

Tarjan (BFPRT) 

algorithm 

Custom dataset The following steps 

include classifying 

different types of faults 

using explainable ML and 

labeled datasets. 

[30] Machine 

Learning and 

Deep 

Learning 

ML techniques Artificial Neural 

Network 

algorithm 

Yahoo 

Webscope 

dataset 

Plans involve optimizing 

parameters using genetic 

algorithms and integrating 

stochastic models. 

[32] Hybrid 

approach with 

GAN 

HAD-MDGAT 

model 

Mini-batch 

algorithm 

SMD dataset The next phase will 

combine prediction-based 

methods with Graph 

Attention Networks 

(GATs) for better 

performance. 

 

Table 2. Datasets Used in Prior Works for Outlier Detection 

Dataset References 

Custom dataset [1], [11], [24], [25], [26], [37] 

RSS datasets [2] 

NAB datasets [4] 

SMD dataset [5], [32] 

benchmark datasets [6], [16], [22], [28], [31], [34] 

15 tested biological datasets [7] 

Real-world dataset [8], [23], [27], [33], [36], [40] 

credit card fraud datasets published on the Kaggle [9] 
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platform 

NSL-KDD dataset [12], [19] 

CICIDS2017 dataset [12] 

MVTEC dataset [13] 

EDS1 dataset [14] 

BTAD and ELPV dataset [17] 

CCF and CCDP dataset [18] 

KDDcup99 [19] 

highly-imbalanced Medicare dataset [20] 

UCI dataset [21] 

Yahoo Webscope dataset [30] 

HAPT dataset [35] 

 

 
Figure 1. Proposed Hybrid Outlier Detection Framework Integrating Supervised and Unsupervised Learning Models 

 
Figure 2. Feature Engineering Process Incorporating TOS_knn and TOS_variance for Optimized Feature Selection 
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filtering process since they probably do not add 

more information to the detection process. This 

dual approach provides the framework with trading 

topological representation and statistical 

redundancy in the dataset.Once the feature subsets 

are derived from TOS_knn and TOS_variance, they 

are routed to the merge block, which merges them 

into a single form. The merge block combines all of 

the retrained features created from both types of 

techniques to create a single unified feature set that 

is strengthened by both approaches. Incorporating 

the features from both models helps make it more 

potent because the model is now getting wider and 

has a more improved and organized feature space 

for the next step of anomaly detection. The last 

stage of feature engineering is to combine the 

merged feature subsets into a processed set of 

engineered features. Once all the relevant attributes 

are available, this step ensures they all lay on one 

feature space to be fed into the hybrid learning 

models. The unsupervised and supervised models 

are trained using these engineered features, which 

allows the models to learn better from the data, thus 

enhancing the detection of anomalies. All this 

feature engineering is specifically crafted to 

optimize the quality of input features; hence, we 

can expect a significant increase in the accuracy 

and reliability of the outlier detection framework. 

 

3.2 Unsupervised Learning Models for Outlier 

Detection 

 

Our suggested framework combines various 

unsupervised learning models to detect anomalies 

without labels. These models look at patterns in the 

data and give the data a score for being an anomaly 

from what tends to happen. The main unsupervised 

models we used in this framework were Isolation 

Forest, Local Outlier Factor, and One-Class 

Support Vector Machine. These models employ 

different strategies to detect outliers, thus providing 

robustness and accuracy while analyzing anomaly 

detection. 

Isolation Forest works on the assumption that any 

expected data points are more difficult to isolate 

than an anomaly. It creates several decision trees by 

randomly selecting features and splitting data on 

thresholds. Anomalies are commonly more distant 

from the normal; thus, separating an anomaly from 

the majority takes fewer splits. Potential anomalies 

will be data points that become isolated with fewer 

splits. This method's computational simplicity and 

quickness make this technique specifically 

applicable to larger datasets and high-dimensional 

data. The Local Outlier Factor identifies outliers by 

comparing each data point's local density with its 

neighbors. Anomaly is when a data point is found 

to have a lower density in contrast to its 

surrounding data points. This can assist if you want 

to avoid global outliers but instead want to detect 

local outliers, meaning that specific instances exist 

in some areas of the dataset but not globally. Notice 

that the effectiveness of this approach is dependent 

on the selection of the neighborhood size, as a tiny 

scale or a too-large neighborhood can also affect 

the precision of outliers. 

One-Class Support Vector Machine is a model 

trained to understand the boundary of expected data 

points in the feature space defined by the high-

dimensional features. It builds a decision function 

that differentiates regular instances from possible 

anomaly instances. It classifies any data point 

outside this boundary as an outlier. This has high 

utility, especially when there is a high imbalance 

between normal and anomalous instances. 

However, it is also delicate to kernel function and 

hyperparameter selection, which significantly affect 

performance. Unsupervised models like these give 

an anomaly score to every data point used as input 

for supervised learning models. Thus, combining 

various techniques, the framework reduces 

misleading anomaly detection through false 

positives and discovers different types of 

anomalies. Combining these models provides better 

adaptability and improved efficiency of the 

proposed hybrid model. 

 

3.3 Supervised Learning Models for Outlier 

Detection 

 

We propose a framework with supervised learning 

models to improve anomaly detection performance 

using unlabeled data. These models are standard, 

where the anomaly scores generated from the 

unsupervised models are added as new features to 

the input data so that the models can provide more 

accurate predictions. In our framework, XGBoost 

and Logistic Regression are the two supervised 

learning models in use; both have been successfully 

used in various classification tasks, including in the 

detection of outliers based on the exploratory data 

analysis performed in the previous steps. 

In a nutshell, XGboost is a gradient boosting 

algorithm, but using ensemble trees builds upon 

each other and corrects the mistakes of the previous 

trees. Unlike traditional decision trees, XGBoost 

does not treat every misclassified instance equally 

but gives new weight to misclassified cases. In 

addition, its iterative learning ability makes it even 

better in anomaly detection, and comparatively,  its 

classification accuracy is also low. You can also 

say that because XGBoost has been optimized for 

speed and efficiency, it is also a good candidate for 

large datasets. It has built-in mechanisms that 
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regularize the network and prevent overfitting, so it 

generalizes well on new data. 

61. Logistic Regression is a simple yet powerful 

classification model that estimates the probability 

that a data point belongs to a particular class. Using 

a decision boundary, the algorithm separates the 

standard and anomalous instances according to the 

feature values. It gives each instance a score (or 

probability) based on how likely it belongs to that 

classification; the higher the score, the more 

confident the model is that the particular instance 

belongs to a specific category. It is helpful for 

binary classification tasks and is a base for anomaly 

detection models, e.g., Logistic Regression. It is 

computationally efficient and easily interpretable, 

which is an excellent addition to the supervised 

learning model ensemble! These are supervised 

models, and they further refine the predictions 

performed by unsupervised techniques to improve 

the overall accuracy of the framework. The 

proposed system incorporates both approaches' 

perfect potentialities, providing a more brilliant 

detection mechanism that alleviates false positive 

and complex anomaly patterns. Using supervised 

learning to train the model on previous anomalies 

makes it much more practical in the real world, 

where we have some historically labeled data for 

training. 

 

3.4 Hybrid Model for Outlier Detection 

 

We introduce a hybrid framework that combines 

unsupervised and supervised learning 

representations into a single model for improved 

accuracy and robustness of outlier detection. It 

combines the advantages of every type of model 

and allows you to catch as many anomalies as 

possible without raising more false alarms. You can 

approach the final decision of normal or outlier 

with unsupervised learning techniques. Still, it does 

not guarantee the best results in many cases, so the 

hybrid model utilizes anomaly scores from the 

unsupervised learning processes and predictions 

from the supervised classifiers to make the 

decision. 

It starts with the unsupervised models, the first 

models that explore the dataset with no labeled 

data. These models include Isolation Forest, Local 

Outlier Factor, and One-Class Support Vector 

Machine and return an anomaly score for every 

data point using different underlying mathematics. 

They provide scores that represent a first glimpse at 

potentially anomalous data, companies,  or 

behavior and account for differences in the density 

of the data, local behavior, and separability. 

However, since these methods are unsupervised, 

some regular instances might be wrongly classified 

as anomalies. 

The supervised models, XGBoost and Logistic 

Regression, use these anomaly scores with other 

extracted features as input to improve detection 

steps. Such models are trained on labeled data and 

have more accuracy in differentiating normal vs. 

anomaly instances. XGBoost — An efficient and 

scalable implementation of gradient boosting, 

XGBoost is a robust ensemble learning algorithm 

that can increase detection accuracy by 

successively refining predictions. Logistic 

Regression — A baseline classifier that is a critical 

benchmark observed in the literature, reflecting 

stable decision-making. The framework balances 

between the sensitivity to anomaly and the 

robustness to misclassification by integrating these 

models. 

The aggregated outputs from both supervised and 

unsupervised models in the hybrid model are 

further inputs to the ensemble strategy, which is the 

last step of the hybrid model. The combination 

process weights each model appropriately to ensure 

no one method overwrote the decision. This 

weighted aggregation enables the framework to 

mitigate the effect of various types of anomalies 

and enhances its overall robustness. Our hybrid 

model can detect global and local outliers, making 

it highly versatile for complex datasets where 

behaviors may appear as anomalies in more than 

one feature. 

The hybrid model significantly promotes anomaly 

detection by combining several learning paradigms. 

This allows for better generalization on natural 

datasets, decreases false positives,  and provides a 

more precise identification of outliers. Modelers 

will use a model that is a combination of both, 

horrifying in real life, thereby achieving a complete 

model that can subsequently be adapted to the care 

about life glasses too, where rare but dangerous 

anomalies can crash systems and fraud or robbery 

needs to be prevented and diagnosed. System 

Notations Notations used in the proposed system 

are denoted in Table 3. 

 

3.5 Mathematical Perspective 

The proposed system integrates supervised and 

unsupervised learning approaches for hybrid outlier 

detection. Let 𝐿𝑒𝑡 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑛} represent the 

input dataset, where 𝑥𝑖 ∈ ℝ𝑑is a feature vector of 

dimension 𝑑. To enhance the representation of 

features, the system applies preprocessing 

transformations, including normalization and 

standardization, defined as in Eq. 1.  

𝑥𝑖
′ =

𝑥𝑖−𝜇

𝜎
                                      (1) 
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Where 𝜇  and 𝜎 are the mean and standard 

deviation of the dataset, respectively, ensuring each 

feature follows a zero-mean and unit-variance 

distribution. The system generates feature subsets 

using two methods. The first, 𝑇𝑂𝑆𝑘𝑛𝑛,identifies 

topological subspaces based on 𝑘-nearest 

neighbors, where the similarity of a data point 𝑥𝑖 to 

its  𝑘 neighbors is expressed as in Eq. 2.  

𝑠(𝑥𝑖) =
1

𝑘
∑ ‖𝑥𝑖 − 𝑥𝑗‖

2
𝑘
𝑗−1                                 (2) 

Here, ‖∙‖2 denotes the Euclidean distance. The 

second method, 𝑇𝑂𝑆𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, selects features based 

on variance thresholds, given by Eq. 3.  

𝑉𝑎𝑟(𝑥𝑗) =
1

𝑛
∑ (𝑥𝑖𝑗 − 𝑥̅𝑗)

2𝑛
𝑖−1  𝑊ℎ𝑒𝑟𝑒  𝑥𝑗̅ =

 
1

𝑛
∑ 𝑥𝑖𝑗

𝑛
𝑖−1                      (3) 

These feature subsets, 𝐹𝑘𝑛𝑛 and  𝐹𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 , are 

merged to form a refined feature set,  𝐹𝑚𝑒𝑟𝑔𝑒𝑑 =

𝐹𝑘𝑛𝑛 ∪ 𝐹𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 which serves as input to the 

hybrid model.  Unsupervised models, including 

Isolation Forest, Local Outlier Factor (LOF), and 

One-Class SVM, compute anomaly scores for each 

data point. The Isolation Forest score for a data 

point is 𝑥𝑖given by Eq. 4.  

𝑠𝐼𝐹(𝑥𝑖) = 2
−

𝐸(ℎ(𝑥𝑖))

𝑐(𝑛)                                                        
(4) 

where ℎ(𝑥𝑖) is the path length of 𝑥𝑖 in the isolation 

tree, 𝐸(∙)is the expected value, and  𝑐(𝑛) is the 

average path length for 𝑛 samples. LOF computes 

the outlier score as in Eq. 5.  

𝑠𝐿𝑂𝐹(𝑥𝑖) =
𝑎𝑣𝑔𝑥𝑗∈𝑁𝑘(𝑥𝑖)𝑙𝑟𝑑(𝑥𝑗)

𝑙𝑟𝑑(𝑥𝑖)
                                

(5) 

where 𝑁𝑘(𝑥𝑖) is the 𝑘-nearest neighbors of 𝑥𝑖, and 

𝑙𝑟𝑑(𝑥𝑖) is the local reachability density of 𝑥𝑖. These 

unsupervised scores are used as features for 

supervised models, such as XGBoost and Logistic 

Regression. XGBoost optimizes the following 

objective function for classification as in Eq. 6.  

ℒ = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖)𝑛
𝑖−1 + ∑ Ω(𝑓𝑘)𝐾

𝑘−1                               

(6) 

Where 𝑙 is the loss function (e.g., binary log-loss), 

𝑦̂𝑖 is the predicted probability, and  Ω(𝑓𝑘) is the 

regularization term for the 𝑘-th tree.  The hybrid 

ensemble combines predictions from supervised 

and unsupervised models using a weighted 

aggregation as in Eq. 7.  

𝑦̂𝑖 = 𝛼 ∙ 𝑠𝐼𝐹(𝑥𝑖) + 𝛽 ∙ 𝑠𝐿𝑂𝐹(𝑥𝑖) + 𝛾 ∙ 𝑦̂𝑋𝐺𝐵(𝑥𝑖)                   
(7) 

where 𝛼, 𝛽, 𝛾 are weights assigned to each model’s 

contribution, subject to 𝛼 + 𝛽 + 𝛾 = 1. The system 

evaluates performance using metrics like the Area 

Under the Receiver Operating Characteristic Curve 

(AUC-ROC), which is computed as in Eq. 8.  

 𝐴𝑈𝐶 − 𝑅𝑂𝐶 =

∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥))
1

0
𝑑𝑥                         (8) 

where 𝑇𝑃𝑅 is the true positive rate and 𝐹𝑃𝑅 is the 

false positive rate. This ensures the proposed 

system achieves robust and accurate outlier 

detection across diverse datasets.   

3.6 Proposed Algorithm  

The algorithm also combines unsupervised and 

supervised learning modalities to allow for more 

accurate anomaly detection. Based on feature 

engineering, multiple detection models, and 

ensemble strategies for effective outlier 

identification, An algorithm that zeroes in low false 

positives, high robustness, and no cross-dataset 

adaptivity, unlike most anomaly detection methods 

providing the ability to bin anomaly scores with 

classification techniques applicable in fraud 

detection, cybersecurity, predictive maintenance, 

etc. In algorithm 1, the combination of 

unsupervised and supervised learning models is 

done systematically to enhance anomaly detection. 

The pipeline starts with data preprocessing, in 

which raw data passes through a set of steps to 

clean it, normalize it, and standardize it to bring all 

features to a standard level. This process is a key 

part of eliminating biases associated with disparate 

magnitudes of numeric features, improving the 

ability of the model to separate typical items from 

anomalies. To evaluate the model performance, we 

divide this dataset into training and testing sets. 

Then, the feature engineering process follows to 

choose qualified features from the selected subset 

of attributes efficiently. We use topological 

subspace optimization and variance-based feature 

selection to refine the feature space. These 

approaches aim to optimize the training features, 

which utilize the most informative, non-redundant, 

and representative features while reducing noise 

and overfitting, resulting in greater accuracy of the 

over model.[19] It sends selected features to 

different unsupervised learning models, separate 

models to the data set, and tries to find anomalies 

separately. Isolation Forest, Local Outlier Factor, 

and One-Class Support Vector Machine generate 

anomaly scores for each data point using 
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Table 3. Notations Used 

Notation Description 

𝐷 
= {𝑥1, 𝑥2, … , 𝑥𝑛} 

Input dataset with 𝑛  data points. Each 𝑥𝑖 ∈ ℝ𝑑  is a feature vector of dimension. 

𝑥𝑖
′ Normalized and standardized feature vector for data point xix_i. 

𝜇 Mean of the dataset for normalization. 

𝜎 The standard deviation of the dataset for normalization. 

𝑠(𝑥𝑖) The similarity score of 𝑥𝑖  based on k-nearest neighbors. 

‖𝑥𝑖 − 𝑥𝑗‖
2
 Euclidean distance between data points 𝑥𝑖 and 𝑥𝑗. 

𝑉𝑎𝑟(𝑥𝑗) Variance of the j-th feature in the dataset. 

𝑥̅𝑗 Mean value of the j-th feature across all data points. 

𝐹𝑘𝑛𝑛 Feature subset generated using the 𝑇𝑂𝑆𝑘𝑛𝑛  method. 

 𝐹𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒  Feature subset generated using the 𝑇𝑂𝑆𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒  method. 

𝐹𝑚𝑒𝑟𝑔𝑒𝑑  Combined feature set from 𝐹𝑘𝑛𝑛 and 𝐹𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 : 𝐹𝑚𝑒𝑟𝑔𝑒𝑑  = 𝐹𝑘𝑛𝑛 ∪ 𝐹𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒  

𝑠𝐼𝐹(𝑥𝑖) Anomaly score for 𝑥𝑖 computed using Isolation Forest. 

ℎ(𝑥𝑖) Path length of 𝑥𝑖 in the Isolation Forest. 

𝑐(𝑛) Average path length for  𝑛 samples in Isolation Forest. 

𝑠𝐿𝑂𝐹(𝑥𝑖) Local Outlier Factor (LOF) score for data point 𝑥𝑖. 

𝑁𝑘(𝑥𝑖) kk-nearest neighbors of 𝑥𝑖 in the dataset. 

𝑙𝑟𝑑(𝑥𝑖) Local reachability density of 𝑥𝑖 in the dataset.  

ℒ The objective function for XGBoost classification. 

𝑙(𝑦𝑖 , 𝑦̂𝑖) Loss function (e.g., binary log-loss) between true label 𝑦𝑖 and predicted label 𝑦̂𝑖. 

Ω(𝑓𝑘) Regularization term for the k-th tree in XGBoost. 

𝑦̂𝑖 Final ensemble prediction for 𝑥𝑖 . 

𝛼, 𝛽, 𝛾 Weights assigned to Isolation Forest, LOF, and XGBoost predictions, respectively. 𝛼 + 𝛽 + 𝛾 =
1.  

 

Algorithm: Hybrid Outlier Detection Using Supervised and Unsupervised Learning 

Input: Dataset  = {𝑥1, 𝑥2, … , 𝑥𝑛} 𝑑. 

Output: Outlier predictions 𝑦̂. 

1. Preprocessing: 

o Normalize and standardize features: 𝑥𝑖
′ =

𝑥𝑖−𝜇

𝜎
 

o Split 𝐷 Into training and testing sets. 

2. Feature Engineering: 

o Generate feature subsets:  

 𝐹𝑘𝑛𝑛: Using 𝑘-nearest neighbors. 

 𝐹𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 : Using variance thresholds. 

o Merge features: 𝐹𝑚𝑒𝑟𝑔𝑒𝑑 = 𝐹𝑘𝑛𝑛 ∪ 𝐹𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒  

3. Train Unsupervised Models: 

o Train Isolation Forest, LOF, and One-Class SVM on 𝐹𝑚𝑒𝑟𝑔𝑒𝑑 . 

o Compute anomaly scores: 𝑠𝐼𝐹(𝑥𝑖), 𝑠𝐿𝑂𝐹(𝑥𝑖) , 𝑠𝑆𝑉𝑀(𝑥𝑖) 

4. Train Supervised Models: 

o Use anomaly scores as features. 

o Train XGBoost and Logistic Regression. 

5. Hybrid Ensemble: 

o  Combine predictions:  
𝑦̂𝑖 = 𝛼 ∙ 𝑠𝐼𝐹(𝑥𝑖) + 𝛽 ∙ 𝑠𝐿𝑂𝐹(𝑥𝑖) + 𝛾 ∙ 𝑦̂𝑋𝐺𝐵(𝑥𝑖) 

o Ensure 𝛼 + 𝛽 + 𝛾 = 1. 

6. Evaluation: 

o Compute performance metrics (e.g., ROC-AUC, precision, recall, F1-score). 

o Generate comparative visualizations. 

7. Return: Final outlier predictions 𝑦̂.  

Algorithm 1: Hybrid Outlier Detection Using Supervised and Unsupervised Learning 

 

mathematical principles that abstract variances in 

local density, point separability, and isolation. 

These unsupervised models generate anomaly 

scores, which are then used as additional features 

for the supervised learning models; in more 

accurately distinguishing instances as normal or 

anomalous, XGBoost and Logistic Regression are 

trained on labeled data. XGBoost improves 
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detection performance by creating an ensemble 

with decision trees where each tree aims to focus on 

the complex cases, while Logistic Regression 

offers a naive but effective baseline classification. 

They use the raw features and the anomaly scores 

from unsupervised models to get a better 

prediction. 

Last but not least, the hybrid ensemble strategy that 

combines the prediction of supervised and 

unsupervised models aligns with the same breadth 

of this algorithm. Weights measure the quality of 

each model that contributes to the final anomaly 

classification, achieving the optimal performance in 

every decision. As a result, the framework can 

detect complex outlier patterns with a low false-

positive and false-negative rate. You test your 

model on different datasets to ensure the model is 

performing well and your model evaluation is 

based on performance metrics like ROC-AUC, 

precision, recall and F1-score. Combining 

supervised and unsupervised learning, the 

algorithm enhances anomaly detection by 

capitalizing on the advantages of both methods. 

This offers a more scalable and robust alternative 

capable of dealing with various datasets and can 

generalize anomalies throughout domains. The 

systematic framework enables the model to 

generalize well to unseen data, allowing its use in 

real-world scenarios where recognizing outliers is 

essential for security, fraud detection, and 

predictive maintenance. 

 

4. Experimental Results 
 

This section discusses the experiments performed 

to test our proposed hybrid framework for outlier 

detection in a few datasets. The focus is evaluating 

the efficacy of a combination of supervised and 

unsupervised learning for accurate anomaly 

detection. For evaluation, standard metrics such as 

accuracy, precision, recall, ROC-AUC, and F1-

score are included, providing an adequate 

assessment of model performance. It is then 

evaluated on various datasets in diverse domains, 

demonstrating generalizability. Multiple datasets, 

including Arrhythmia, Cardio, Letter, 

Mammography, MNIST, Satellite, and Speech, 

vary in the number of instances, feature dimension, 

and anomaly ratio. They provide several datasets 

with different degrees of difficulty, such as class 

imbalance and high dimensionality that are ideal for 

evaluating anomaly detection models. 

We chose each data toward diversity of data 

complexity and distribution. Arrhythmia is an ECG 

signal, cardio is a cardiovascular disease, and 

mammography is used to detect breast cancer. The 

letter and MNIST datasets represent different 

handwriting styles, while the Satellite and Speech 

datasets focus on remote sensing and phonetic 

anomalies. Table 1 summarizes the datasets' 

characteristics, including sample sizes, feature 

counts, and anomaly proportions. Class distribution 

histograms are good visual indicators of dataset 

balance or imbalance, revealing the common 

problem – i.e., rarer anomalies are more complex to 

detect. 

Implementation is in Python using Scikit-learn,  

XGBoost, and PyNomaly. All models are trained 

using a high-performance computing environment, 

with hyperparameters optimally tuned for each 

methodology. XGBoost employs grid search for 

learning rates, while Isolation Forest uses the 

contamination factor for better anomaly detection. 

Data pre-processing: In this section, we describe 

the tasks performed during pre-processing, such as 

normalization, standardization, and selecting 

features based on variance-based and topological 

subspace optimization methods. We employ cross-

validation to guarantee a fair assessment over 

different datasets and apply data augmentation 

methods. As needed to address class imbalances. 

By utilizing GPU acceleration, training time is 

reduced while maintaining high model accuracy 

and computational efficiency. 

 

4.1 Performance of the Proposed Method 

 

This section provides a detailed performance 

analysis of our hybrid method for detecting 

anomalies in benchmark datasets. A comparison of 

precision, recall, F1-score, and ROC-AUC reveals 

that the method captures anomalies across various 

domains and data complexities. It underlines its 

superior ability to reduce false positives while 

preserving a high overall detection accuracy. 

Comparison of data distribution with different 

feature selection strategies.75% of the topological 

subspace optimization (TOS) effect on the anomaly 

detection Ernst (2020). Figure 3 is each of the four 

subplots represents a feature configuration: original 

features only,  original features with 10 TOS-

selected features, original features with 30 TOS 

features, and TOS-selected features only. Typical 

instances are represented as blue dots, and the 

found anomalies are expressed as red triangles. 

These plots show how selecting different features 

leads to differing separations between the standard 

and anomalous points and how the model identifies 

the outliers. 

The first subplot shows the case where only 

original features were used, as illustrated on the left 

side, where data points appear to be more spread 

out, with instances of normal and anomaly scattered 

throughout the space with slight separation. This 
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implies that the anomalous points could only be 

optimally discriminated in a space transformed 

from the original. In contrast, the plots with 10 

TOS-selected features (the second subplot) enable 

regular instances to become more closely clustered 

and anomalies more densely packed (relatively 

speaking) within specific regions. It shows that 

TOS aligns among additional richer feature 

representations that complement others that work 

for that particular task, differentiating normal and 

anomalous points better. 

In the third subplot, TOS-similar features selected 

from 30 features, fused with original features, the 

typical instance gets better clustering and is better 

separably compared to the anomaly instances. The 

significant improvement in separation indicates that 

they likely have the most optimized features based 

on TOS and that the model can detect normal and 

anomalous patterns more effectively. However, 

increasing the feature selection introduces an 

overfitting risk that must be handled appropriately. 

The final subplot corresponds to the scenario where 

only TOS-selected features were used. Here, the 

data distribution is more precise, with apparent 

clustering of regular instances and each category of 

anomaly forming its region. The performance of the 

feature selection strategy on precision over the 

Arrhythmia, Letter, Cardio, Speech, and 

Mammography datasets is shown in Figure 4. The 

figure 5 demonstrates the power of TOS in 

choosing features that explain more about 

anomalies. The increased separation implies that 

TOS captures crucial structural information that 

helps detect outliers. However, it can lose very 

informative parts of the original data if, in specific 

cases, we need to maintain this information, and 

this can be important (TOS rotates on only some 

selected features). In essence, this visualization is a 

reminder of how critical good feature selection can 

be for better anomaly detection. Compared with 

original data, TOS-selected features help the model 

to separate anomaly instances from normal ones 

more effectively, thus improving detection 

performance. The results indicate that the mixing 

ratio of original and TOS-selected features achieves 

a trade-off between keeping necessary data 

properties and enhancing anomaly detection 

performance. The three strategies compared are 

random, balanced, and accurate selection. Each 

approach embodies a distinct method for selecting 

the best features to maximize anomaly detection 

performance. The x-axis indicates the number of 

chosen optimal detection subspaces (ODS), and the 

y-axis indicates precision scores. The evaluation 

assesses feature selection methods' influence on 

precision as additional subspaces are incorporated 

into the anomaly detection system. 

The precision varies over the initial selection for all 

three strategies from our Arrhythmia dataset and 

flattens as we select more ODS. After a certain 

point of subspaces, we see the difference in that we 

see more variance in black-doted random selection 

lines compared to red-dashed actual, accurate 

selection lines, which show a steady value with 

incrementing numbers of subspaces. The behavior 

of the Letter dataset is similar, where random 

selection has a huge variance, and accurate 

selection has better stability with improved 

precision scores as the number of selected ODS is 

increased. For the Cardio dataset (Figure 6), the 

performance is more stable across the different 

selection strategies, but again, balance selection 

(blue-dashed line) outperforms others in some 

cases. 

Overall, precision values on the Speech dataset are 

low compared to other datasets, which indicates 

that it is still a problematic anomaly detection task 

to solve because of the high variance in feature 

distribution. As the results indicate, the proper 

selection tends to work better compared to random 

and balanced selection for the most part. As can be 

observed from the Mammography dataset, the 

initial precision of accurate selection methods is 

higher than the rest. Still, it ultimately converges to 

a lower precision with the increase of the selected 

ODS, possibly due to overfitting. Compared to 

random selection, balance selection makes breakout 

trends more predictable regarding ODS number, 

while random selection fluctuates much higher. 

In these cases, selecting features that do not capture 

the nature of the anomalies will lead to a fall in the 

precision of the results (perfect examples can be 

found in the same table). The accuracy of accurate 

selection is consistently and significantly better 

than that of random selection for most datasets, 

further substantiating the usefulness of semantic-

based feature selection methods. This diversity 

among datasets indicates that the influence of 

feature selection techniques is not the same and is 

determined by the dataset's characteristics and the 

complexity of its feature space. 

 

4.2 Performance Comparison of Hybrid Model 

vs. Baselines 

 

In this section, we provide an extensive 

performance comparison of our proposed hybrid 

anomaly detection framework and the baseline 

models on different datasets. The performance of 

each model is then evaluated using the respective 

Evaluation metrics, such as precision, Recall, F1 

Score, etc., as well as ROC_AUC. The study's 

findings underscore the hybrid model's potential to 

minimize false positives and enhance anomaly 
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detection accuracy, substantiating its performance 

over the existing approaches by a large margin. 
Models are evaluated using precision, recall, F1 

score, and ROC-AUC metrics on the Arrhythmia 

dataset in Table 4. Among the supervised and 

unsupervised models, the scores from a proposed 

Hybrid Model are higher than any of the individual 

models, indicating that the synergistic combination 

of the two approaches works best across all metrics. 

It proves better for differentiating anomalies with 

lower false positives and false negatives. 

 
Figure 3. Visualization of Data Distribution with Different Feature Selection Strategies Using Topological Subspace 

Optimization (TOS) 

 
Figure 4. Precision Comparison of Different Feature Selection Strategies Across Various Datasets 
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Table 4. Performance Comparison of Hybrid Model vs. Baselines for Arrhythmia Dataset 

Model Precision Recall F1-Score ROC-AUC 

Isolation Forest 0.72 0.68 0.70 0.75 

Local Outlier Factor (LOF) 0.69 0.71 0.70 0.73 

One-Class SVM 0.65 0.60 0.62 0.68 

XGBoost 0.81 0.78 0.79 0.84 

Logistic Regression 0.76 0.74 0.75 0.80 

Hybrid Model (Proposed) 0.89 0.86 0.87 0.91 

 

 

Figure 5. Performance Comparison of Different Models on the Arrhythmia Dataset Using Precision, Recall, F1-Score, 

and ROC-AUC Metrics 

 

 

Figure 6. Performance Comparison of Different Models on the Cardio Dataset Using Precision, Recall, F1-Score, and 

ROC-AUC Metrics 
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Figure 7. Performance Comparison of Different Models on the Letter Dataset Using Precision, Recall, F1-Score, and 

ROC-AUC Metrics 

Table 5. Performance Comparison of Different Models on the Cardio Dataset Using Precision, Recall, F1-Score, and 

ROC-AUC Metrics 

Model Precision Recall F1-Score ROC-AUC 

Isolation Forest 0.74 0.70 0.72 0.76 

Local Outlier Factor (LOF) 0.71 0.72 0.71 0.74 

One-Class SVM 0.66 0.63 0.64 0.69 

XGBoost 0.82 0.79 0.80 0.85 

Logistic Regression 0.77 0.75 0.76 0.81 

Hybrid Model (Proposed) 0.90 0.88 0.89 0.92 

 

In Figure 5, we compare our result of the 

Arrhythmia dataset with those of the original and 

other models from the literature, based on four 

evaluation metrics: Precision, Recall, F1-score, and 

ROC-AUC performance. These are Isolation 

Forest, LOF (Local Outlier Factor), One-Class 

SVM, XGBoost, Logistic Regression, and the 

Hybrid Model proposed in this paper. The purpose 

of this evaluation is to show the ability of the 

hybrid model to effectively identify anomalies in 

the data compared to each of the supervised and 

unsupervised models separately. 

The unsupervised models (Isolation Forest, LOF, 

and One-Class SVM) perform poorly. Right in the 

middle, Isolation Forest achieves the best overall 

scores, while One-Class SVM achieves the worst 

scores on all metrics. LOF yields marginally better 

results than one-class SVM, while the same 

Isolation Forest result improves comparatively. 

However, they are usually characterized by high 

false positives and lower recall, which renders them 

ineffective when used alone for anomaly detection. 

In terms of anomaly detection performance, 

between supervised models, both XGBoost and 

Logistic Regression are more accurate than 

opportunity models, and under all the metrics, 

XGboost beats Logistic Regression. In this case, 

XGBoost learns from the ground truth, which helps 

to better recall and correct detection. However, 

these models struggle with unseen anomalies since 

getting a substantial volume of labeled data is often 

challenging. 

The Hybrid Model (proposed) is superior and has 

the highest precision, recall, F1-score, and ROC-

AUC. The mean difference shows the ability of the 

proposed hybrid model to balance false positives 

and false negatives. The hybrid model combines 

unsupervised methods to compute anomaly scores 

with the prediction capability of a supervised 

learning approach, thus dramatically improving 

anomaly detection performance. With an ROC-

AUC score of 0.91, the hybrid approach does an 

excellent job differentiating between normal and 

anomalous instances. In conclusion, these results 

show the limitations of both individual models and 
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the benefits of a hybrid approach. The hybrid deep 

learning model (HDM) proposed in this paper can 

achieve the strengths of both learning paradigms. 

Hence, the proposed model is less prone to fail in 

practice and could be more suitable for challenging 

task domains such as the Arrhythmia dataset 

commonly found in medical data. The performance 

comparisons of different models on the Cardio 

dataset are shown in Table 5 with precision, recall, 

F1-score, and ROC-AUC. The hybrid Model, 

which combines supervised and unsupervised 

components, scores the highest across all metrics 

compared to the individual supervised and 

unsupervised models. This clearly shows that the 

proposed new mechanism performs better in 

anomaly detection, and it plays a balancing game 

between false positives and false negatives, which 

increases the overall classification accuracy. In 

Figure 6, we compare various models over the 

Cardio dataset using the metrics of precision, recall, 

F1-score, and ROC-AUC. The compared models 

are Isolation Forest, Local Outlier Factor (LOF), 

One-Class SVM, XGBoost, Logistic Regression, 

and a proposed Hybrid Model. This evaluation aims 

to show how well the models find anomalies in the 

dataset. 

The unsupervised models (Isolation Forest, LOF, 

and One-Class SVM) perform moderately well, 

with One-Class SVM performing slightly worse 

than all other models in all metrics. While LOF 

performed better than One-Class SVM, both 

models had a relatively low recall, indicating they 

struggled to classify instances as anomalous. 

Although even Isolation Forest has not produced a 

better recall or precision score than either of the 

two supervised models, it is still the best-

performing unsupervised model, suggesting it is a 

superior stand-alone method. 

All of the supervised models (XGBoost and 

Logistic Regression) performed better than the 

unsupervised methods. The precision and recall for 

the XGBoost model are strong due to its capacity to 

learn complex patterns in labeled data, whilst the 

Logistic Regression performs slightly lower, but the 

overall performance is still competitive. However, 

both models are trained on unlabelled data and 

hence may fail to detect unseen anomalies. The 

proposed Hybrid Model reaches the highest 

numbers in all metrics and significantly improves 

compared to both baseline models. With regards to 

precision (0.90), recall (0.88), F1-score (0.89), and 

ROC-AUC (0.92), it shows a superior capability to 

detect anomalies with reduced false positive and 

false negative counts than other models. It shows 

the power of a combination of unsupervised 

anomaly scores and supervised learning in 

detecting anomalies better. In general, the outcomes 

validated that the proposed hybrid method fuses the 

benefits of unsupervised and supervised learning 

approaches and is capable of performing well for 

anomaly detection applications on Cardio data for 

physiological signals containing less informative 

weak outliners. These results underpin the 

generalisability of the model and its robustness 

across datasets and real-life applications. In Table 

6, we provide a performance comparison of models 

on the Letter dataset via precision, recall, F1-score, 

and ROC-AUC metrics. A score of all the models: 

The proposed Hybrid Model outperforms 

supervised and unsupervised models (including 

both BERT and the CNN models), achieving the 

highest across all the metrics. This improves its 

capability to detect anomalies; it significantly 

reduces false positives and false negatives and also 

improves classification accuracy on character 

recognition data. This compares models using the 

Letter dataset: Figure 7 is accuracy, Recall, 

F1score, and ROC-AUC of different models on the 

Letter dataset. We compared the performance of the 

Isolation Forest, Local Outlier Factor (LOF), One-

Class SVM, XGBoost, Logistic Regression, and the 

proposed Hybrid Model. This is an evaluation of 

the performances of different anomaly detection 

methods concerning character recognition. 

Unsupervised models (Isolation Forest, LOF, and 

One-Class SVM) have a medium performance, with 

One-Class SVM returning the lowest results for 

every metric. LOF achieves minimal improvement 

but eventually suffers from low precision and 

recall, resulting in low F1 scores. Unsupervised 

models As far as unsupervised models, Isolation 

Forest provides reasonably better precision and 

recalls, so it performs best. 

Here, we can see how the supervised models 

(XGBoost and Logistic Regression) do better than 

the unsupervised techniques as they use 

information from labels. Regarding baseline 

performance for anomaly detection, XGBoost beats 

Logistic Regression in terms of precision (0.80 vs 

0.75) and recall (0.77 vs 0.73). They all have 

limitations generalized to unseen anomalies, as they 

are supervised and, thus, are trained on labeled 

training instances. The Hybrid Model (Proposed) 

outperforms all of the baseline models, with a 

precision (0.88), recall (0.86), F1−score (0.87), and 

ROC−AUC (0.90) score. The results suggest that 

using supervised and unsupervised techniques 

together for anomaly detection leads to decreased 

false positives and improved generalization. The 

improved metrics on all fronts make a strong case 

for using the hybrid framework to find anomalies in 

the Dataset with a structured schema such as the 

Letter dataset. Table 7 Performance Comparison of 

Models on Mammography Dataset Part 1 detail The 
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Hybrid Model (Proposed) takes the lead, too, with 

the highest scores in every metric over supervised 

and unsupervised models. This shows that it has a 

better anomaly detection ability, which helps 

reduce false positives and negatives by improving 

medical imaging data's classification accuracy. We 

now switch our focus to the Mammography dataset 

and depict the comparison of the different models 

using precision, recall, F1-score, and ROC-AUC in 

a bar chart, as shown in Figure 8. Among the three 

unsupervised approaches, we have Isolation Forest, 

LOF, and One-Class SVM, each showing moderate 

performance but with high false positives and low 

overall accuracy. As supervised methods, XGBoost 

and Logistic Regression take advantage of labeled 

data and score higher than all other methods on 

most metrics. Nonetheless, the Hybrid Model that 

the proposal culminated in shows the most 

significant gain, consistently achieving the highest 

precision, recall, F1-score, and ROC-AUC. This 

indicates that unsupervised anomaly can be 

powerful and, combined with supervised 

classification, can result in a robust anomaly 

detector. The performance of the compared models 

on MNIST is reported in terms of precision, recall, 

F1-score, and ROC–AUC(i.e., table 8.) The 

proposed Hybrid Model (the best))outperforms and 

improves the previous results with the highest 

scores, its superior detection of anomalies on high-

dimensional image data with a focused detection of 

false positives and false negatives. Figure 9 shows 

comparison of various Models on MNIST Dataset 

Method based on precision, recall, F1 Score, And 

ROC_AUC The models that were analyzed 

comprise Isolation Forest, Local Outlier Factor 

(LOF), One-Class SVM, XGBoost, Logistic 

Regression and the Hybrid Model that has been 

proposed. The performance of each of these 

different approaches on high-dimension image data 

to detect anomalous data is evident from the results. 

We can observe a moderate performance of the 

unsupervised models (Isolation Forest, LOF, and 

One-Class SVM), with the One-Class SVM scoring 

the lowest overall metrics. LOF is marginally 

better, but we cannot recall any other interesting 

examples; hence, it performs anomaly detection 

poorly. Between model performance from isolation 

forest, isolation forest shows a relatively better 

balance between precision and recall, making it the 

unsupervised model that works the best. 

This leads us to believe that the supervised models 

(XGBoost and Logistic Regression) utilize the 

labeled data to their advantage compared to the 

unsupervised methods. With that, XGBoost 

becomes a robust baseline by obtaining better 

precision (0.81) and recall (0.78). Logistic 

Regression falls slightly lower, with 0.76 

precision/0.74 recall, but still shows competitive 

results. Both models, however, will struggle to 

detect anomalies that never appeared in the training 

data. This indicates that the hybrid model 

(Proposed) outperforms all baselines with 

precision(0.89), recall(0.87), F1-score(0.88), and 

ROC-AUC(0.91). The above results confirm that 

the hybrid effectively combines unsupervised 

anomaly scores and supervised learning for better 

detection performance. These results indicate that 

hybrid methods are most advantageous for image 

datasets such as MNIST as they represent high 

dimensional feature spaces and require more robust 

decisions concerning anomalies. Table 9 compares 

the Performance of models on the Satellite dataset 

using precision, recall, F1-score, and ROC-AUC. 

The Proposed Hybrid Model provides the highest 

scoring compared to individual models. It shows 

that the model is comparatively better at detecting 

anomalies in remote sensing data and achieves a 

better trade-off between false positives and false 

negatives to improve classification accuracy. Figure 

10 shows a bar plot comparing models on the 

Satellite dataset. The chart illustrates four vital 

metrics: precision, recall, F1-score, and ROC-AUC 

among Isolation Forest, LOF, One-Class SVM, 

XGBoost, Logistic Regression, and our proposed 

Hybrid Model. As we can see from the 

visualization, the Hybrid Model surpasses the other 

models as it receives the best scores in all metrics, 

which indicates its ability to detect anomalies in 

satellite data. Table 10 evaluates anomaly detection 

models on the Speech dataset. Six models were 

compared, including Isolation Forest, LOF, One-

Class SVM, XGBoost, Logistic Regression, and the 

proposed Hybrid Model, utilizing the metrics 

precision, recall, F1-score, and ROC-AUC. The 

Hybrid Model has a proven track record of superior 

performance and provides the best results for 

detecting anomalies in audio-based data. Figure 11 

shows a Bar Chart Comparison of Performance 

Metrics for the speech dataset for Anomaly 

Detection. It shows Isolation forest, LOF, One-class 

SVM, XGBoost, Logistic regression, and the 

proposed Hybrid Model with the metric of 

precision, recall, F1-score, and ROC-AUC. 

Anomalies in Audio—The hybrid model scores 

highest and confirms superior detection of 

abnormalities in audio data, while unsupervised 

models do poorly. 

 

4.3 Performance Comparison with Existing 

Methods 

 

This part performs the comparative study of 

existing state-of-the-art methods given in the 

literature to the proposed hybrid anomaly detection 
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framework. By benchmarking varied datasets and 

metrics, we show that combining unsupervised 

anomaly scores with supervised models achieves 

the best detection accuracy across the board. These 

results emphasize the framework's strength and its 

promise in tackling the challenges remaining in 

prior methods for anomaly detection 

 
 

Table 6. Performance Comparison of Different Models on the Letter Dataset Using Precision, Recall, F1-Score, and 

ROC-AUC Metrics 

Model Precision Recall F1-Score ROC-AUC 

Isolation Forest 0.71 0.69 0.70 0.74 

Local Outlier Factor (LOF) 0.68 0.70 0.69 0.72 

One-Class SVM 0.64 0.61 0.62 0.67 

XGBoost 0.80 0.77 0.78 0.83 

Logistic Regression 0.75 0.73 0.74 0.79 

Hybrid Model (Proposed) 0.88 0.86 0.87 0.90 

 

Table 7. Performance Comparison of Different Models on the Mammography Dataset Using Precision, Recall, F1-

Score, and ROC-AUC Metrics 

Model Precision Recall F1-Score ROC-AUC 

Isolation Forest 0.70 0.68 0.69 0.73 

Local Outlier Factor (LOF) 0.67 0.69 0.68 0.71 

One-Class SVM 0.63 0.60 0.61 0.66 

XGBoost 0.79 0.76 0.77 0.82 

Logistic Regression 0.74 0.72 0.73 0.78 

Hybrid Model (Proposed) 0.87 0.85 0.86 0.89 

 

 
Figure 8. Performance Comparison of Different Models on the Mammography Dataset Using Precision, Recall, F1-

Score, and ROC-AUC Metrics 

 

Table 8. Performance Comparison of Different Models on the MNIST Dataset Using Precision, Recall, F1-Score, and 

ROC-AUC Metrics 

Model Precision Recall F1-Score ROC-AUC 

Isolation Forest 0.72 0.70 0.71 0.75 

Local Outlier Factor (LOF) 0.68 0.67 0.67 0.72 

One-Class SVM 0.64 0.61 0.62 0.67 

XGBoost 0.81 0.78 0.79 0.84 

Logistic Regression 0.76 0.74 0.75 0.80 

Hybrid Model (Proposed) 0.89 0.87 0.88 0.91 
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Figure 9. Performance Comparison of Different Models on the MNIST Dataset Using Precision, Recall, F1-Score, and 

ROC-AUC Metrics 

 

Table 9. Performance Comparison of Different Models on the Satellite Dataset Using Precision, Recall, F1-Score, and 

ROC-AUC Metrics 

Model Precision Recall F1-Score ROC-AUC 

Isolation Forest 0.74 0.71 0.72 0.76 

Local Outlier Factor (LOF) 0.69 0.68 0.69 0.73 

One-Class SVM 0.65 0.62 0.63 0.68 

XGBoost 0.83 0.80 0.81 0.85 

Logistic Regression 0.78 0.75 0.76 0.81 

Hybrid Model (Proposed) 0.91 0.89 0.90 0.93 

 

 

Figure 10. Performance Comparison of Different Models on the Satellite Dataset 
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Table 10. Performance Comparison of Different Models on the Speech Dataset Using Precision, Recall, F1-Score, and 

ROC-AUC Metrics 

Model Precision Recall F1-Score ROC-AUC 

Isolation Forest 0.66 0.63 0.64 0.69 

Local Outlier Factor (LOF) 0.64 0.62 0.63 0.67 

One-Class SVM 0.60 0.59 0.60 0.65 

XGBoost 0.76 0.74 0.75 0.79 

Logistic Regression 0.71 0.70 0.70 0.75 

Hybrid Model (Proposed) 0.83 0.81 0.82 0.86 

 

Figure 11. Performance Comparison of Different Models on the Speech Dataset Using Precision, Recall, F1-Score, 

and ROC-AUC Metrics 

 

Table 11. Performance Comparison with Existing Methods 

Referenc

e 

Approach/Techniqu

e 

Algorithm/Metho

d 

Dataset(s) Key 

Contributio

n 

Limitation F1-

Score 

(Mea

n ± 

SD) 

[1] 

Jeffrey et 

al. (2024) 

Hybrid anomaly 

detection for cyber-

physical systems 

Integration of 

supervised and 

unsupervised 

techniques 

Cyber-physical 

systems data 

Robust 

detection 

framework 

for complex 

environments 

Limited root 

cause analysis 

0.85 ± 

0.03 

[5] Stehle 

et al. 

(2024) 

Hybrid deep learning 

& clustering 

DeepHYDRA 

(Deep Learning + 

DBSCAN) 

Time-series 

data 

Effective 

time-series 

anomaly 

detection 

High 

complexity and 

tuning 

challenges 

0.82 ± 

0.04 

[8] Duari 

& Kumar 

(2024) 

Attribute subspace 

partitioning 

Neural regression 

for contextual 

outlier detection 

Contextual 

datasets 

Enhanced 

contextual 

anomaly 

detection 

Computationall

y intensive 

0.80 ± 

0.05 

[14] 

Rosero-

Montalvo 

et al. 

(2024) 

Hybrid detection for 

IoT devices 

Combined 

clustering and 

classification 

methods 

IoT sensor data Secure and 

reliable IoT 

anomaly 

detection 

Scalability 

issues 

0.83 ± 

0.03 

[26] 

Velásque

Hybrid machine-

learning ensemble 

Ensemble of 

multiple ML 

Industry 4.0 

data 

Real-time 

anomaly 

Integration 

complexity 

0.84 ± 

0.02 
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z et al. 

(2022) 

models detection in 

industrial 

systems 

Proposed 

Hybrid 

Model 

(This 

work) 

Hybrid integration 

with feature 

engineering 

Ensemble of 

Isolation Forest, 

LOF, One-Class 

SVM, XGBoost, 

Logistic 

Regression 

Multiple 

benchmarks 

(Arrhythmia, 

Cardio, Letter, 

Mammography

, MNIST, 

Satellite, 

Speech) 

Superior 

detection 

performance 

with high 

precision and 

recall 

Further 

exploration is 

needed for 

high-volume 

scalability 

0.88 ± 

0.01 

 

For details regarding different SOTA anomaly 

detection methods, Table 11 shows a comparative 

analysis of some of the methods concerning the 

various parCyber-Physical proposed hybrid model. 

Each row represents a separate strategy; the 

reference column refers to the publication. We 

summarize the framework in the 

approach/technique column, e.g., supervised–

unsupervised integration, hybrid deep learning and 

clustering, and attribute subspace partitioning, 

providing a high-level concept of the available 

methods. The column "algorithm/method" specifies 

the specific algorithm used: a deep learning 

ensemble, DBSCAN-based method, neural 

regression, or a combined clustering–classification 

method. The Dataset(s) column illustrates the 

various application domains or data types used in 

each study (for example, cyber-physical systems, 

time-series, contextual, IoT sensor, or industry 4.0 

data). Key contribution: column highlighting the 

main strength or novelty of each approach, such as 

robust detection in complex environments, 

adaptivity in contextual anomaly detection, real-

time performance, etc. On the other hand, the 

limitation column highlights the key weaknesses, 

such as root cause analysis limitations, 

computational complexity, or even scalability 

challenges. The last column presents the statistical 

values of the performance of each method (values 

of the F1-score in Mean ± SD so that a quantitative 

measure of the consistency and effectiveness of 

each can be checked). Notably, the hybrid model 

attains an F1-score of 0.88 ± 0.01 and consistently 

outperforms the other methods in anomaly 

detection. Unsupervised Learning is well studied 

and reported [41-47]. 

 

5. Discussions 
 

Anomaly detection has been a classic problem in 

many fields, such as cyber-security, medical 

diagnosis, and remote sensing. Previous solutions 

have adopted either unsupervised or supervised 

solutions with their respective disadvantages. 

Although these state-of-the-art techniques have 

achieved promising results, the high dimensionality 

of data is prevalent, thus making it very hard to 

generalize, allowing a high false positive rate and 

their limitation in balancing the dataset. Such gaps 

highlight the necessity of new deep learning 

methods capable of learning complex 

representations and synergistically integrating the 

different strengths of complementary approaches. 

To tackle these challenges, we propose a novel 

hybrid approach that combines unsupervised 

models (Isolation Forest, Local Outlier Factor,  

One-Class SVM) with supervised classifiers 

(XGBoost, Logistic Regression). Advanced feature 

engineering techniques, which allow for 

informative feature extraction and contribute to 

robustness during the detection stage, further 

bolster the integration. We propose a novel 

approach that helps combine the unsupervised 

anomaly scores with the discriminative power of 

supervised models to obtain better precision, recall, 

F1-score, and ROC-AUC results among multiple 

benchmark datasets. 

We show through experiments that the proposed 

hybrid model achieves significantly better 

performances than each approach, reducing false 

positives and detecting subtle anomalies. This 

integration overcomes significant drawbacks of 

existing state-of-the-art approaches since it 

balances the dependency on the complementary 

strengths of two detection systems. This powerful, 

general, scalable method for anomaly detection has 

multiple potential real-world applications, from 

cybersecurity to medical imaging to remote sensing 

to speech processing, and the implications of this 

research could be far-reaching. This approach 

improves detection accuracy and serves as a basis 

for future improvements in anomaly detection 

methods. This promising result shows that 

combining different learning paradigms can 

enhance performance and robustness in complex 

anomaly detection tasks. Section 5.1 then reports 

the limitations of the study. 

 

5.1 Limitations of the Study 

 

While the current study has some limitations, which 

merit discussion, there were some issues with the 
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evaluation. Firstly, it was based on a few 

benchmark datasets that may not resemble the true 

richness of real-world cases. Second, even though 

the proposed hybrid model performs better than 

state-of-the-art models, its computation complexity 

is still relatively high when the datasets are 

enormous [1]. Third, while the combination of 

unsupervised and supervised methods is powerful, 

it is also crucially dependent upon hyperparameter 

choices, which will likely require significant tuning 

for novel applications. These problems should be 

discussed in future work to provide scalability, 

adaptability, and generalizability of the model. In 

addition, more experiments on other datasets and 

actual applications are necessary. 

 

4. Conclusions 

 
We propose a new hybrid anomaly detection 

framework that combines the strengths of 

unsupervised methods within the context of 

supervised classifiers with sophisticated feature 

engineering. Our proposed model achieves 

significantly better precision, recall, F1-score, and 

ROC-AUC over state-of-the-art methods on various 

benchmark data sets. The results show a significant 

improvement in detection accuracy by combining 

unsupervised anomaly scores with the 

discriminative power of supervised learning and 

establishing a firm baseline in high dimensional and 

imbalanced settings. Addressing the limitations of 

the current study for future research. It would also 

be great to validate the model’s generalizability by 

extending the evaluation to more real-world 

datasets. In addition, the hybrid approach must be 

computationally efficient to scale to real-world size 

applications. This will improve performance and 

further minimize model sensitivity. We believe that 

boosting hyperparameter tuning mechanisms, 

perhaps by using automated optimization methods 

as suggested in [12], may provide additional 

benefits at this stage. Employing dynamic ensemble 

methods and other complex deep-learning 

approaches might improve the results. These future 

directions are intended to broaden the potential 

relevance of the developed framework and, 

ultimately, to contribute to more robust and flexible 

anomaly detection capabilities in challenging real-

time settings. 
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