

Copyright © IJCESEN

International Journal of Computational and Experimental

Science and ENgineering

(IJCESEN)

Vol. 11-No.3 (2025) pp. 4007-4018
http://www.ijcesen.com

ISSN: 2149-9144

 Research Article

An Efficient Approach for Encrypted Traffic Classification and Intrusion

Detection using Packet Transformer Encoder and CNN

K. Harinath 1 and G. Kishor Kumar 2*

1 Research Scholar, Department of CSE, JNTUA, Ananthapuramu, 515001, Andhra Pradesh, India.
Email: harirooba007@gmail.com – ORCID: 0000-0001-7854-5834

2* Department of CSE (AI & ML), Rajeev Gandhi Memorial College of Engineering and Technology, Nandyal, 518501,

Andhra Pradesh, India.
* Corresponding Author Email: kishorgulla@yahoo.co.in – ORCID: 0000-0001-9624-2968

Article Info:

DOI: 10.22399/ijcesen.1377

Received : 20 January 2025

Accepted : 28 March 2025

Keywords :

Encrypted Traffic

Deep Learning

Classification

BERT

CNN

Abstract:

As encryption technology rapidly progresses and applications experience exponential

growth, the research focus on network traffic classification has intensified. Current

methods for classifying encrypted traffic exhibit certain constraints. Traditional

techniques, including machine learning, heavily depend on feature engineering. Deep

learning approaches are vulnerable to the quantity and distribution of labeled data,

while pretrained models predominantly emphasize global traffic features, neglecting

local features. In addressing these challenges, we introduced a methodology that

incorporates both Bidirectional Encoder Representations from Transformers (BERT)

and Convolution Neural Networks (CNN). To underscore both global traffic patterns

and local features, we leverage the BERT and CNN mechanisms, respectively. Our

approach attains state-of-the-art performance on the publicly accessible ISCX-VPN

dataset for both traffic service and application identification tasks, achieving impressive

F1 scores of 99.11% and 99.41%, respectively, in these domains. The experimental

outcomes affirm that our method significantly enhances the performance of encrypted

traffic classification.

1. Introduction

The classification of network traffic into distinct

categories, known as traffic classification, holds

significant importance in a variety of applications

[1]. These applications include managing Quality of

Service (QoS), pricing strategies, resource

allocation planning, and the detection of malware

and intrusions, etc. Recognizing its significance, a

wide array of approaches has been devised to cater

to the evolving and diverse requirements of various

application scenarios. Notably, recent

developments in communication technologies,

encompassing encryption and port obfuscation,

have introduced further complexities to the realm of

network classification.

Traffic classification techniques have undergone

substantial evolution over time [2]. The initial and

most straightforward method involved using port

numbers, although its accuracy has diminished due

to newer applications employing well-known port

numbers to conceal their traffic or bypassing

standard registered port numbers. Despite its

decreased accuracy, port numbers are still

commonly used, either on their own or in

combination with other attributes, in practical

applications. The subsequent generation of traffic

classifiers shifted their focus to packet content,

utilizing data packet inspection (DPI) to identify

patterns or keywords within data packets. These

DPI methods are primarily effective for

unencrypted traffic but come with a high

computational overhead. The methods such as port

numbers and DPI based for traffic classification are

not capable enough for modern traffic

circumstances towards encrypted traffic [3].

In light of the rapid advancement in internet

technology and the growing emphasis on data

privacy, contemporary network application traffic

commonly undergo encryption using a range of

encryption protocols to guarantee data security and

privacy [4,5]. Leading the pack among these

encryption protocols are Secure Socket Layer

(SSL) and its successor, Transport Layer Security

http://dergipark.org.tr/en/pub/ijcesen
http://www.ijcesen.com
mailto:harirooba007@gmail.com
mailto:kishorgulla@yahoo.co.in

K. Harinath and G. Kishor Kumar / IJCESEN 11-3(2025)4007-4018

4008

(TLS) [7,40]. According to a recent report from

Google, as of October 2021, 98% of web pages

loaded on Chrome have implemented SSL/TLS

encryption.

The SSL/TLS communication process comprises

two main stages: the handshake and the formal data

transmission. During the initial handshake, the

client initiates the process by sending a Client Hello

to the server, encompassing a random number and

the supported cipher suites. The server responds

with a Server Hello, containing the agreed-upon

cipher suite, server certificate, and another random

number. Subsequently, both parties collaboratively

derive a final master key using the exchanged

information. The server then concludes the

handshake by sending a Server Finish to the client.

In the second stage, utilizing the established master

key, both parties employ symmetrical encryption

for data transmission, enhancing decryption speed

compared to asymmetric encryption methods.

The primary difficulty in classifying encrypted

traffic lies in effectively characterizing the

encrypted data stream. In contrast to plaintext

network traffic, which can be identified through

deep packet inspection, encrypted packets defy

classification based on their content alone. While

the Server Name Indication (SNI) field in TLS

handshake packets can occasionally offer insights

into the nature of the traffic, it’s worth noting that

not all cases include complete handshake packets.

An encouraging approach to tackle encrypted

traffic classification involves the application of

machine learning algorithms [9-11]. Nevertheless,

the majority of these techniques rely on manually

crafted flow features, leading to the omission of

crucial packet details and hindering the possibility

of fine-grained operations. Consequently, this

compromises the accuracy of classification.

Addressing this challenge involves the

comprehensive amalgamation of information from

various components within TLS traffic to achieve a

more precise classification. When examining

network packets, one must consider the IP, TCP,

TLS headers, payload, and other elements.

Simultaneously, network flows comprise

handshake, transmission, and communication finish

packets. In terms of informational content, network

traffic encompasses flow details, statistical data,

packet lengths, TLS message types, and more.

Numerous prior studies have focused on the

integration of diverse information sources, such as

incorporating certificate packet lengths into hand-

designed features [12] [13] or appending TLS

message types to packet length sequences [14].

Despite these efforts, effective methods for

integrating a diverse array of information sources

remain elusive to date [15].

To enhance the classification accuracy of encrypted

traffic, preserve information integrity to the fullest

extent, and introduce finer packet-level operations,

this paper introduces a model that incorporates both

transformer and convolutional neural network

(CNN) architectures. The rationale behind

employing the multi-head self-attention mechanism

in transformers is to concentrate on the data content

from various viewpoints, aligning with the

aforementioned challenges. Further the CNN is

used for classifying the network traffic into various

categories.

The rest of the paper is organized as follows. The

related work on encrypted traffic classification is

given in Section 2. Section 3 gives the problem

definition and also the proposed work. Section 4

discusses the datasets used for various experiments.

Section 5 gives the experimental analysis on the

datasets used for encrypted traffic classification.

The paper is concluded in Section 6.

2. Literature Survey

This section provides an overview of relevant

survey literature encompassing diverse encrypted

traffic classification methods. The review covers

traditional approaches, methods based on message

types, length sequences, message types, statistics,

and end-to-end techniques for traffic classification.

The Conventional approaches comprise port-based

methods [16] and payload-based methods [17].

Port-based methods rely on identifying applications

through a port registration list provided by the

Internet Assigned Numbers Authority (IANA).

However, this method’s reliability diminishes as

more applications utilize dynamically allocated

ports or employ common communication protocol

ports for camouflage. The payload-based method,

also known as deep packet detection (DPI),

classifies applications by detecting key strings in

network traffic. The work presented in [18]

employed application-level signatures to classify

P2P application traffic, while the research in [8]

utilized statistical application signatures.

Unfortunately, both methods are limited to handling

unencrypted network traffic and prove entirely

ineffective for encrypted traffic.

Length-based methods abstract network flows into

sequences of lengths, employing Markov models or

other machine learning techniques to characterize

these sequences. The rationale behind utilizing

length sequences as packet representations lies in

the significant variations in packet size patterns

among different application traffics. For instance,

upload/download type traffic typically exhibits

larger average packet sizes compared to chat-type

traffic. An example of such an approach is App

K. Harinath and G. Kishor Kumar / IJCESEN 11-3(2025)4007-4018

4009

scanner, as introduced in [19] and [20], which

leverages a packet length vector to classify mobile

applications. Employing the Random Forest

algorithm, it successfully categorizes the 110 most

popular bot-generated Android applications,

achieving an impressive application re-

identification accuracy of up to 96% in optimal

conditions. Recently, in [53], they proposed FS-

Net, a framework for classifying encrypted traffic

using deep neural networks. FS-Net employs packet

length sequences as input, utilizes bidirectional

GRU [22] for feature encoding, and introduces a

reconstruction mechanism in AutoEncoder to

ensure the validity of the learned features. While

length sequences have demonstrated effectiveness

in encrypted traffic classification across various

prior works, relying solely on packet length for

representation is a simplistic approach that may

overlook important details. In cases where packet

lengths are similar or identical (e.g., packet

fragmentation in the IP layer), the length sequence

loses its discriminative power.

The SSL/TLS packet headers incorporate a field

identifying the message type within each packet.

Initially, Korczyriski et al. [23] introduced a

unidirectional firstorder homogeneous Markov

model for encrypted traffic classification, based on

the sequence of message types. Subsequently, Shen

et al. [13] proposed a second-order Markov model

that integrates the certificate packet length with the

length of the initial communication packet.

However, this approach is not without limitations:

i) the Markov model relies on a small number of

data points (two or three-time steps) for training,

resulting in a lack of comprehensive sequential

information; ii) the limited number of message

types leads to overlapping issues [15]. Some studies

have attempted to address these challenges by

combining length sequences and message types

[15], offering a partial solution to the

representational limitations of a single message

type feature. Beyond message types, several other

fields, including cipher suite, version, and

certificate information, can convey information

about encrypted HTTPS traffic. Nonetheless, these

methods are specific to SSL/TLS traffic and are not

applicable to a broad spectrum of protocols,

including unencrypted HTTP, RTP, SRTP,

MTProto, and various general mobile application

classifications.

Statistical feature-based methods in network traffic

analysis aim to derive flow level statistical features,

subsequently employing machine learning

algorithms for classification. These features

typically like average packet length, average time

interval, and transmission rate. Open-source tools

like CICFlowMeter [24] and Joy [25] facilitate the

extraction of such features. Zhu et al. [26]

introduced the Attention based Multi-Flow LSTM

(AMF-LSTM) model for network attack detection,

leveraging multiple flows to incorporate historical

network information. Their approach utilized

Attention Mechanism (AM) to identify network

traffic with significant contributions to

classification. Shbair et al. [27] proposed a two-

level hierarchical framework for traffic

classification. This framework also introduced a

new set of statistical features for categorizing

services operating over HTTPS connections.

Evaluation results indicated that 50 out of the 68

considered HTTPS services achieved a recall rate

above 95%. Despite their effectiveness, these

approaches have limitations, including highly

abstracted features that hinder fine-grained

operations (such as learning the relationship

between two packets). Additionally, the extraction

of statistical features often requires observing the

entire network flow until its completion, rendering

real-time traffic classification impractical.

Recent efforts have explored strategies for end-to-

end encrypted traffic classification, where” end-to-

end” refers to the direct utilization of raw network

packet bytes without manually designed features.

This approach maximizes the potential of neural

networks to autonomously discover hidden

features. Currently, Convolutional Neural Networks

(CNN) serve as the primary method for end-to-end

traffic classification [28], Wang et al. [29] proposed

a technique involving the conversion of packets

into images, processed with 1D-CNN, achieving

notable performance on the ISCX VPNNon-VPN

traffic dataset. This dataset was also assessed in

[30], employing Stacked Autoencoders (SAE) and

CNN. The approach retained the IP header and the

initial 1480 bytes of each IP packet as input,

achieving over 90% accuracy in classifying 17

applications at the packet level. However, pure

CNN exhibits limitations in representing network

flow characteristics as it cannot capture interactive

information across different time steps. Addressing

this, [31] and [32] initially employed CNN to learn

features from the first 784 bytes of each packet,

then combined these features using Long Short-

Term Memory (LSTM) to obtain the flow feature

vector. Rezaei et al. [33] adopted a similar strategy,

learning the header and payload of the first six

packets and achieving effective identification of

ambiguous flows. Despite the integration of more

complex joint models, these works fundamentally

represent single-modal end-to-end learning

frameworks with inherent challenges related to

weak feature representation.

3. Methodology

K. Harinath and G. Kishor Kumar / IJCESEN 11-3(2025)4007-4018

4010

A network packet comprises multiple bytes, and the

aggregation of packets occurring within a defined

time frame forms the network traffic set denoted as

S. Let S can be defined as follows:

𝑆 = {𝑃1 , 𝑃2 , . . . , 𝑃𝑚}, 𝑚 = |𝑆| (1)

Each packet 𝑃𝑖 , can be defined as

𝑃𝑖 = {𝑋𝑖 , 𝐵𝑖 , 𝑇𝑖 }, 1 < 𝑖 < 𝑚;

𝑋𝑖

= {𝑆𝑟𝑐𝐼𝑃𝑖, 𝐷𝑠𝑡𝐼𝑃𝑖, 𝑆𝑟𝑐𝑃𝑜𝑟𝑡𝑖 , 𝐷𝑠𝑡𝑃𝑜𝑟𝑡𝑖 , 𝑃𝑟𝑜𝑡𝑐𝑜𝑙𝑖}.

𝐵𝑖 = {𝑏𝑦𝑡𝑒1, 𝑏𝑦𝑡𝑒2, . . . , 𝑏𝑦𝑡𝑒𝑝},

0𝑥00 <= 𝑏𝑦𝑡𝑒𝑘 <= 0𝑥𝑓𝑓, 1 <= 𝑘 <= 𝑝.

𝑇𝑖 > 0;

Therefore, a packet 𝑃𝑖 can be represented with a 5-

tuple 𝑋𝑖, byte content 𝐵𝑖 and the start time 𝑇𝑖. The

collection of packets with the same X can be called

as Flow, the 𝑘-th flow can be defined as follows

(2).

 𝑓𝑘 = {𝑃𝑘
 1, 𝑃𝑘

 2, . . . 𝑃𝑘
 𝑙}, 𝑙 = |𝑓𝑘| (2)

In (2),

𝑋𝑘
 1 = ⋯ = 𝑋𝑘

 𝑙 𝑎𝑛𝑑 𝑇𝑘
 1 < ⋯ < 𝑇𝑘

 𝑙

Hence, the original traffic set can also be

represented as,

 𝑅′ = {𝑓1, 𝑓2, . . . 𝑓𝑘}, 𝑘 = |𝑅′| (3)

For the given observed packet sequence R and the

presence of N applications, our objective is to

develop a model ϕ (fl) that can predict the label Ll of

a network flow fl, 1 <= Ll <= N.

3.1 BERT:

The introduction of the BERT model by the Google

AI team marked a significant milestone in the field

of Natural Language Processing (NLP), propelling

NLP research forward dramatically [41]. BERT

demonstrated outstanding performance in the

Stanford Question Answering Dataset 1.1 (SQuAD)

challenge [41], a prominent machine reading

comprehension competition. It surpassed human

performance across the board in two evaluation

metrics and exhibited excellence in eleven different

NLP tasks. BERT not only ushered in a new era of

NLP but also gained widespread popularity in

various other domains. Its effectiveness extended to

the field of cyber-security, where it demonstrated

exceptional performance.

3.2 Convolutional Neural Network:

The design of convolutional networks draws

inspiration from the biological structure of vision

[42], making convolutional neural networks

(CNNs) particularly adept at learning local features

or features with non-stationary locations [1]. CNNs

have demonstrated exceptional performance across

diverse domains, including natural language

processing [43] and machine vision [44]. In recent

years, CNNs have also exhibited remarkable

proficiency in handling encrypted traffic. For

instance, in the utilization of DeepPacket, as

highlighted in [45], CNNs achieved a notably high

accuracy rate on the ISCX dataset.

In image classification tasks, successive

convolutional layers of CNNs progressively extract

features from individual pictures. Notably, features

extracted in the initial convolutional layers tend to

be relatively straightforward, such as edges and

curves. As the process advances to deeper

convolutional layers, the extracted features become

more intricate. The features obtained in the

intermediate layers of the network often prove to be

complex and challenging for humans to interpret

[57]-[59].

3.3 Fully Connected Layer:

In deep learning models, the fully connected layer

(FC) typically functions as a classifier, translating

the data features acquired by the model into the

labeled space. The fundamental operation of the

fully connected layer involves a matrix–vector

product, expressed by the following formula:

 𝑌 = 𝑊 × 𝑋 + 𝐵 (4)

In (4), W represents the weight of the fully

connected layer, while B denotes the bias of the

fully connected layer. The input and output vectors

are represented by X and Y, respectively.

The BERT attention mechanism is employed to

capture packet-level feature vectors, which are

subsequently transformed into byte feature input

vectors through a convolutional layer. This process

generates locally salient features. Following the

convolutional operations, the enriched feature

vector, containing substantial information, serves as

the input for a fully connected layer tasked with

traffic prediction.

In the proposed framework, an encoder is employed

to transform a series of symbolic representations

K. Harinath and G. Kishor Kumar / IJCESEN 11-3(2025)4007-4018

4011

(x1,...xn) into a corresponding sequence of

continuous representations denoted as z = (z1,...zn).

Subsequently, utilizing the obtained continuous

representation z, a decoder is responsible for

generating an output sequence (y1,...ym) of symbols

in a step-by-step fashion. The model operates in an

autoregressive manner, as detailed in reference

[34]-[35], wherein the generation of each symbol at

a given step involves the incorporation of

previously generated symbols as supplementary

input. The Transformer adopts the overall structure

by employing stacked self-attention and point-wise,

fully connected layers in both the encoder and

decoder. These components are illustrated in the

left and right halves of Figure 2, respectively.

The transformer model architecture consists of

various components such as encoder, decoder,

attention mechanism etc. and each of these is

discussed as follows. The encoder consists of a

stack comprising N = 6 identical layers, each

containing two sub-layers. The initial sub-layer is a

multi-head self-attention mechanism, while the

second is a straightforward, position-wise fully

connected feed-forward network. A residual

connection [11] encircles each of these sub-layers,

followed by layer normalization [36]. In essence,

the output of each sub-layer is obtained through the

expression LayerNorm(x + Sublayer(x)), where

Sublayer(x) represents the function executed by the

sub-layer itself. To accommodate these residual

connections, all sub-layers within the model,

including the embedding layers, generate outputs of

dimension dmodel = 512. The decoder is structured

with a stack of N=6 identical layers. While each

encoder layer comprises two sub-layers, the

decoder introduces a third sub-layer. This additional

sub-layer conducts multi-head attention over the

output of the encoder stack. Similar to the encoder

configuration, residual connections surround each

sub-layer, followed by layer normalization.

Notably, the self-attention sub-layer in the decoder

stack to prevent positions from attending to

subsequent positions. This masking, coupled with

the offset of one position in the output embeddings,

ensures that predictions for position i are solely

influenced by the known outputs at positions

preceding i.

An attention function can be defined as a

mechanism that takes a query and a collection of

key-value pairs as input, producing an output. In

this context, the query, keys, values, and output are

all vector representations. The resulting output is

determined through a weighted summation of the

values, with each value’s weight determined by a

compatibility function that evaluates the

relationship between the query and its

corresponding key.

For Scaled Dot-Product Attention, the input

comprises queries and keys, both of dimension dk,

and values with dimension dv. The computation

involves obtaining dot products between the query

and all keys, dividing each result by dk, and

applying a softmax function to derive weights

assigned to the values. In practical applications, the

attention function is concurrently computed for a

set of queries grouped into a matrix Q.

Correspondingly, the keys and values are organized

into matrices K and V. The resultant matrix of

outputs is calculated as follows (5).

Figure. 1 Transformer-Model-Architecture.

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (5)

Two widely employed attention functions are

additive attention [37] and dot-product

(multiplicative) attention. Additive attention

calculates the compatibility function using a feed-

forward network featuring a single hidden layer.

Although they share similar theoretical complexity,

in practical terms, dot-product attention proves to

be considerably faster and more space-efficient.

This efficiency arises from its implementation

utilizing highly optimized matrix multiplication

code. Notably, while the two mechanisms exhibit

comparable performance for small values of dk,

additive attention surpasses dot-product attention

without scaling for larger values of dk [38].

K. Harinath and G. Kishor Kumar / IJCESEN 11-3(2025)4007-4018

4012

For the Multi-Head attention function, rather than

executing a singular attention function with

dmodel-dimensional keys, values, and queries, we

have observed advantages in linearly projecting the

queries, keys, and values h times. Each projection

involves distinct learned linear transformations,

resulting in dimensions dk, dk and dv, respectively.

The attention function is then applied independently

to these projected versions of queries, keys, and

values in parallel, producing output values of

dimension dv. These outputs are concatenated and

subjected to an additional projection, ultimately

yielding the final values. The use of multi-head

attention enables the model to concurrently focus

on information from various representation

subspaces at different positions. A single attention

head, on the other hand, hinders this capability by

averaging the information.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) =
𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (6)

In (6),

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝑘 , 𝑉𝑊𝑖
𝑉) (7)

In (7), the projections are parameter matrices

𝑊𝑖
𝑄 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝐾 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖
𝑉 ∈

 ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣𝑎𝑛𝑑 𝑊𝑂 ∈ ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙

In this work we employ h = 6 parallel attention

layers, or heads. For each of these we use dk = dv =

dmodel/h = 64. Due to the reduced dimension of each

head, the total computational cost is similar to that

of single-head attention with full dimensionality.

4. Datasets

To assess the efficacy of our approach, we

conducted experiments utilizing two datasets such

as the ISCX VPN-nonVPN traffic dataset (ISCX-

VPN) [39] provided by the University of New

Brunswick and ISCX 2012 IDS dataset [56]. The

first dataset comprises raw traffic data generated by

various applications, each labeled based on the

actions performed during the traffic capture (e.g.,

chats, file transfers, video calls) and the originating

application (e.g., Youtube, Facebook, Netflix). Our

experiments focused on service and application

identification tasks using this dataset. The service

categories encompassed 12 distinct categories,

while the applications were classified into 17

categories, as detailed in Table 1.

To streamline the raw traffic data and adapt it to

our model’s input format, we initially employed the

Datagram2Token tool [40]. This involved

segmenting the dataset at the packet level and

removing dynamic host configuration protocol

(DHCP) and address resolution protocol (ARP)

packets lacking pertinent information about the

originating applications. To address potential bias

inferences stemming from

Figure. 2 Proposed Model Architecture.

robust discriminative information in packet

headers, such as port numbers and IP addresses, we

excluded the protocol ports of the TCP header, IP

header, and Ethernet header. Subsequently, we

utilized a bi-gram model to encode the resulting

hexadecimal sequences [40]. To manage data

volume, we randomly selected a maximum of 5000

packets from each class, maintaining a uniform

sample size across all classes, except for the AIM-

Chat and ICQ classes in the application

identification task, where sample sizes were 1340

and 823, respectively. The dataset, aligned with

ET-BERT [40], was then divided into training,

validation, and test datasets in an 8:1:1 ratio. Our

preprocessing tailored the ISCX-VPN dataset to

suit the characteristics of both service and

application identification tasks, leading to the

creation of distinct ISCX-VPN-Service and ISCX-

VPN-App datasets. The statistical information of

the datasets is given in Table 2.

The second dataset utilized for assessing the

efficacy of the proposed model in intrusion

detection is derived from the ISCX 2012 IDS

dataset [56]. This dataset encompasses seven days

of network traffic, categorized into five classes:

K. Harinath and G. Kishor Kumar / IJCESEN 11-3(2025)4007-4018

4013

Normal, Brute Force SSH, DDoS, HttpDoS, and

Infiltrating. For simplicity, we exclusively focus on

days with malware traffic. As malware traffic

typically exhibits a smaller scale compared to

normal traffic in real-world scenarios, we opt not to

apply any normalization.

Table 1. Details of the Dataset

Dataset Service Application

ISCX-VPN Chat AIM-Chat

 Email Email

 File Transfer Facebook

 P2P Gmail

 Streaming Hangout

 VoIP ICQ

 VPN-Chat Netflix

 VPN-Email SCP

 VPN-FT Skype

 VPN-P2P Spotify

 VPN-Streaming Tor

 VPN-VOIP Torrent

 Vimeo

 VoipBuster

 VPN-Ftps

 VPN-Sftp

 Youtube

techniques to the dataset. Table 3 illustrates the

structure of the chosen dataset. Subsequently, this

selected dataset is partitioned into training and

testing sets in a 9:1 ratio for each class.

Table 2. Statistical Details of the Dataset1.

Dataset No of Samples No of Labels

ISCX-VPN-Service 60,000 12

ISCX-VPN-App 77,163 17

Table 3. Statistical Details of the Dataset2: ISCX 2012

IDS

Dataset Class Names No of Samples

ISCX 2012 IDS Normal 848306

 Brute Force SSH 6964

 DDoS 22121

 HttpDoS 3482

 Infiltrating Transfer 10044

5. Experiments

To enhance the performance of encrypted traffic

classification, we introduced a methodology

integrating BERT and CNN. The evaluation of this

model utilized the ISCX-VPN dataset, emphasizing

traffic service and application identification tasks.

This section presents the experimental results.

The experiments were conducted on the Ubuntu

20.04 operating system, employing a 14-core Intel®

Xeon® Gold 6330 CPU @ 2.00 GHz as the

processor and a single NVIDIA 3090 graphics

processing unit with a 24 GB memory size.

Throughout all experiments, PyTorch version

1.11.0 and universal encoder representations [46]

were utilized. Model parameters included a

maximum input length of 128 tokens, a batch size

of 32, 16 epochs for training, a learning rate set at

2×10−5, and the choice of the AdamW [47]

optimizer.

We employed four evaluation metrics: accuracy

(AC), precision (PR), recall (RC), and F1 score

(F1). During model evaluation, the category of

interest typically served as the positive class, with

other categories considered as negative classes.

True Positives (TP) represented the number of

correctly identified positive samples, False

Positives (FP) denoted the number of incorrectly

identified negative samples, True Negatives (TN)

indicated the number of correctly identified

negative samples, and False Negatives (FN)

referred to the number of wrongly identified

positive samples.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇 𝑃 + 𝑇 𝑁

 𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁
 (8)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑃
 (9)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇 𝑃

𝑇 𝑃 + 𝑇 𝑁
 (10)

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (11)

The sequence length stands as a crucial parameter

in the BERT model, allowing for sequences up to a

maximum of 512. In cases where it exceeds this

predefined length, the BERT model undergoes

truncation, while shorter sequences undergo a fill

token operation. The choice of sequence length

significantly impacts model performance.

Excessive values may introduce nonsensical tokens,

while overly short lengths risk information loss in

traffic data. Hence, a judicious selection of

sequence length is imperative. Table 4 presents our

model’s accuracy across different sequence lengths.

Table 4. Impact of Sequence Length in terms of

Accuracy.

Sequence Length Service Identification App Identification

8 68.24 92.91

K. Harinath and G. Kishor Kumar / IJCESEN 11-3(2025)4007-4018

4014

16 98.89 99.52

32 99.12 99.14

64 99.01 99.14

128 99.28 99.76

Notably, an increase in sequence length generally

led to improved overall accuracy, peaking at a

sequence length of 128. Consequently, we opted to

set the maximum

Table 5. Impact of No of CNN Layers in terms of

Accuracy.

Number of CNN

Layers

Service

Identification

App

Identification

1 98.82 99.63

2 99.12 99.69

3 99.39 99.76

4 98.96 99.73

sequence length at 128 for optimal model

performance. In Table 5, the model’s performance

is displayed across different numbers of CNN

layers for both service and application

identification. With an increase in the number of

layers, there was a corresponding rise in model

accuracy. Optimal performance is achieved when

utilizing three layers. However, beyond three

layers, the model’s performance either decreased or

remained unchanged. This is attributed to the

introduction of excessive parameters and

computations, negatively impacting the model.

Consequently, the decision was made to set the

number of CNN layers in our model to three for an

optimal balance between accuracy and

computational efficiency.

6. Comparison Study

This paper selected 12 widely acknowledged

methods in encrypted traffic classification as

benchmark approaches. These methods utilize data

that aligns with the data employed in our own

methodology are: Fingerprint construction

approach: FlowPrint [48]; Statistical feature

approaches: AppScanner [50], CUMUL [49], BIND

[51], and k-fingerprinting (K-fp) [54]; Deep

learning approaches: deep fingerprinting (DF) [52],

FS-Net [53], GraphDApp [54] and DeepPacket

[45], CNN-TLBO[60];

Table 6. Comparison results on service identification

tasks.

Method Accuracy Precision Recall F1-Score

AppScanner 71.82 73.39 72.25 71.97

CUMUL 56.1 58.83 56.76 56.68

BIND 75.34 75.83 74.88 74.2

K-fp 64.3 64.92 64.17 63.95

FlowPrint 79.62 80.42 78.12 78.2

DF 71.54 71.92 71.04 71.02

FS-Net 72.05 75.02 72.38 71.31

GraphDApp 59.77 60.45 62.2 60.36

DeepPacket 93.29 93.77 93.06 93.21

CNN-TLBO 97.00

Proposed 99.28 99.14 99.13 99.14

Tables 6 and 7 present the experimental outcomes

for our proposed model and other models in service

identification and application identification using

the ISCXVPN dataset. For the service identification

task, our approach demonstrated superior

performance across four evaluation metrics,

outperforming all baseline models. In the

Table 7. Comparison results on application

identification tasks.

Method Accuracy Precision Recall F1-Score

AppScanner 62.66 48.64 51.98 49.35

CUMUL 53.65 41.29 45.35 42.36

BIND 67.67 51.52 51.53 49.45

K-fp 60.7 54.78 54.3 53.03

FlowPrint 87.67 66.97 66.51 65.31

DF 61.16 57.06 47.52 47.99

FS-Net 66.47 48.19 48.48 47.37

GraphDApp 63.28 59 54.72 55.58

CNN-TLBO 97.00

DeepPacket 97.58 97.85 97.45 97.65

Proposed 99.76 99.48 99.59 99.52

application identification task, our method excelled

by surpassing baseline models in accuracy, recall,

and F1 values, ultimately achieving the top

performance.

Table 8 and Table 9 shows the performance of the

proposed method for each type of encrypted traffic

service identification and also for encrypted traffic

application identification respectively. Upon

thorough observation and analysis, we noted that

relying solely on the CNN model yielded

suboptimal performance. This inadequacy stems

from CNN’s efficiency in capturing local features

while neglecting global features. In contrast, the

BERT model, equipped with a multi-head attention

mechanism, excels at extracting global features. By

leveraging the strengths of both models, we

enhance the overall performance of encrypted

traffic classification.

Table 8. Performance for each type of encrypted traffic

service identification.

Class Precision Recall F1-Score

K. Harinath and G. Kishor Kumar / IJCESEN 11-3(2025)4007-4018

4015

Chat 98.2 99.1 98.6

Email 99.1 97.9 98.5

File-Transfer 100 99.6 99.8

P2P 99.9 100 99.9

Streaming 99.9 99.8 99.8

VoIP 99.6 99.8 99.6

VPN-Chat 99.6 99.4 99.6

VPN-Email 99.6 100 99.8

VPN-FT 99.5 97.4 98.4

VPN-P2P 99.9 100 99.9

VPN-Streaming 99.9 99.8 99.8

VPN-VoIP 97.4 99.2 98.6

7. Conclusion

In this paper, we introduced a novel model for

encrypted traffic classification, leveraging both

BERT and CNN. Our model utilizes the BERT

approach to extract global

Table 9. Performance for each type of encrypted traffic

application identification

Class Precision Recall F1-Score

AIM Chat 99.6 98.6 99.2

Email 99.6 100 99.8

Facebook 99.5 99.2 99.1

Gmail 99.1 99.4 99.1

Hangout 100 99.6 99.8

ICQ 95.6 97.9 97.2

Netflix 100 100 100

SCP 100 99.6 99.7

Skype 99.6 99.8 99.6

Spotify 100 100 100

Tor 100 100 100

Torrent 99.2 99.9 99.5

Vimeo 100 100 100

VoipBuster 100 98.9 99.6

VPN-Ftps 100 100 100

VPN-Sftp 100 99.8 99.9

Youtube 100 100 100

Table 10. Performance for each type of intrusion

detection

Class Precision Recall F1-Score

BFSSH 99.92 99.84 99.18

DDoS 98.74 98.96 98.96

HttpDoS 98.59 99.81 99.12

Infiltrating 98.71 98.84 98.16

features and incorporates the CNN model to capture

local features. The resulting data is then input into

the classifier for predicting the corresponding class

of the encrypted traffic. Experimental results

demonstrate that our model attains state-of-the-art

performance in service identification and encrypted

traffic application recognition tasks on the ISCX-

VPN dataset, achieving remarkable accuracy rates

of 99.12% and 99.65%, respectively. While our

approach exhibits superior performance, it is not

without limitations. Our focus on VPN encrypted

traffic excludes considerations for the

characteristics of other encrypted traffic and the

attributes of malicious traffic. Future research will

extend our method to encompass a broader range of

more traffic types.

Author Statements:

 Ethical approval: The conducted research is

not related to either human or animal use.

 Conflict of interest: The authors declare that

they have no known competing financial

interests or personal relationships that could

have appeared to influence the work reported in

this paper

 Acknowledgement: The authors declare that

they have nobody or no-company to

acknowledge.

 Author contributions: The authors declare that

they have equal right on this paper.

 Funding information: The authors declare that

there is no funding to be acknowledged.

 Data availability statement: The data that

support the findings of this study are available

on request from the corresponding author. The

data are not publicly available due to privacy or

ethical restrictions.

References

[1] Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., &

Liu, Q. (2019). ERNIE: Enhanced language

representation with informative entities

(arXiv:1905.07129). arXiv.

https://arxiv.org/abs/1905.07129

[2] Rezaei, S., & Liu, X. (2019). Deep learning for

encrypted traffic classification: An overview. IEEE

Communications Magazine, 57(5), 76–81.

https://doi.org/10.1109/MCOM.2019.1800819

[3] Zeng, Y., Li, K., He, X., Liu, X., & He, X. (2019).

Deep-Full-Range: A deep learning-based network

encrypted traffic classification and intrusion

detection framework. IEEE Access, 7, 45182–

45190.

https://doi.org/10.1109/ACCESS.2019.2908430

[4] Lin, P., Ye, K., Xu, C.-Z., Wang, Y., & Li, J.

(2021). PEAN: A packet-level end-to-end attentive

network for encrypted traffic identification. In 2021

IEEE 23rd Int. Conf. on High Performance

Computing & Communications

(HPCC/DSS/SmartCity/DependSys) (pp. 1183–

1190). IEEE. https://doi.org/10.1109/HPCC-DSS-

SmartCity-DependSys52092.2021.00161

[5] Liu, J., Duan, H., Li, B., He, Q., & Zhou, W.

(2017). Effective and real-time in-app activity

https://arxiv.org/abs/1905.07129

K. Harinath and G. Kishor Kumar / IJCESEN 11-3(2025)4007-4018

4016

analysis in encrypted internet traffic streams. In

Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery

and Data Mining (pp. 2015–2024). ACM.

https://doi.org/10.1145/3097983.3097992

[6] Lin, P., Ye, K., Xu, C.-Z., & Yang, J. (2022). A

novel multimodal deep learning framework for

encrypted traffic classification. IEEE/ACM

Transactions on Networking, 30(2), 536–549.

https://doi.org/10.1109/TNET.2021.3134495

[7] Sheela, M., Amirthayogam, G., Hephzipah, J. J.,

Suganthi, R., Karthikeyan, T., & Gopianand, M.

(2024). Advanced brain tumor classification using

DEEPBELEIF-CNN method. Babylonian Journal

of Machine Learning, 2024, 89–101.

https://doi.org/10.58496/BJML/2024/009

[8] Roughan, M., Sen, S., Spatscheck, O., & Duffield,

N. (2004). Class-of-service mapping for QoS: A

statistical signature-based approach to IP traffic

classification. In Proceedings of the 4th ACM

SIGCOMM Conference on Internet Measurement

(pp. 135–148). ACM.

https://doi.org/10.1145/1028788.1028805

[9] Lin, P., Ye, K., & Xu, C.-Z. (2019). Dynamic

network anomaly detection system by using deep

learning techniques. In Cloud Computing –

CLOUD 2019: 12th International Conference (pp.

243–252). Springer. https://doi.org/10.1007/978-3-

030-23255-9_19

[10] Alazawi, S. A. H., Abdulbaqi, H. A., & Ali, A. H.

(2024). CNN-based intrusion detection software for

network operating system environment. Babylonian

Journal of Internet of Things (BJIoT), 2024, 79–86.

https://doi.org/10.58496/BJIoT/2024/010

[11] Anderson, B., & McGrew, D. (2016). Identifying

encrypted malware traffic with contextual flow

data. In Proceedings of the 2016 ACM Workshop

on Artificial Intelligence and Security (pp. 35–46).

ACM. https://doi.org/10.1145/2996429.2996435

[12] Kalnoor, G., Sai, K., Dasari, S. S., Waddenkery, N.,

& Pragathi, B. (2024). Enhanced brain tumor

detection from MRI scans using frequency domain

features and hybrid machine learning models.

Journal of Modern Technology, 2024, 141–149.

[13] Shen, M., Wei, M., Zhu, L., & Wang, M. (2017).

Classification of encrypted traffic with second-

order Markov chains and application attribute

bigrams. IEEE Transactions on Information

Forensics and Security, 12(8), 1830–1843.

https://doi.org/10.1109/TIFS.2017.2687799

[14] Liu, C., Cao, Z., Xiong, G., Gou, G., Yiu, S.-M., &

He, L. (2018). MaMPF: Encrypted traffic

classification based on multi-attribute Markov

probability fingerprints. In IEEE/ACM 26th

International Symposium on Quality of Service

(IWQoS) (pp. 1–10). IEEE.

https://doi.org/10.1109/IWQoS.2018.8624182

[15] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,

Jones, L., Gomez, A. N., ... & Polosukhin, I.

(2017). Attention is all you need. In Advances in

Neural Information Processing Systems (pp. 5998–

6008).

https://papers.nips.cc/paper_files/paper/2017/hash/3

f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[16] Zejdl, P., Ubik, S., Macek, V., & Oslebo, A.

(2008). Traffic classification for portable

applications with hardware support. In

International Workshop on Intelligent Solutions in

Embedded Systems (pp. 1–9). IEEE.

https://doi.org/10.1109/WISES.2008.4665073

[17] Park, J.-S., Yoon, S.-H., & Kim, M.-S. (2013).

Performance improvement of payload signature-

based traffic classification system using application

traffic temporal locality. In 15th Asia–Pacific

Network Operations and Management Symposium

(APNOMS) (pp. 1–6). IEEE.

https://doi.org/10.1109/APNOMS.2013.6996521

[18] Sen, S., Spatscheck, O., & Wang, D. (2004).

Accurate, scalable in-network identification of P2P

traffic using application signatures. In Proceedings

of the 13th International World Wide Web

Conference (pp. 512–521). ACM.

https://doi.org/10.1145/988672.988737

[19] Taylor, V. F., Spolaor, R., Conti, M., & Martinovic,

I. (2018). Robust smartphone app identification via

encrypted network traffic analysis. IEEE

Transactions on Information Forensics and

Security, 13(1), 63–78.

https://doi.org/10.1109/TIFS.2017.2736559

[20] Taylor, V. F., Spolaor, R., Conti, M., & Martinovic,

I. (2016). AppScanner: Automatic fingerprinting of

smartphone apps from encrypted network traffic. In

Proceedings of the IEEE European Symposium on

Security and Privacy (EuroS&P) (pp. 439–454).

IEEE. https://doi.org/10.1109/EuroSP.2016.38

[21] Liu, C., He, L., Xiong, G., Cao, Z., & Li, Z. (2019).

FS-Net: A flow sequence network for encrypted

traffic classification. In IEEE Conference on

Computer Communications (INFOCOM) (pp.

1171–1179). IEEE.

https://doi.org/10.1109/INFOCOM.2019.8737553

[22] Cho, K., Van Merriënboer, B., Bahdanau, D., &

Bengio, Y. (2014). Learning phrase representations

using RNN encoder–decoder for statistical machine

translation (arXiv:1406.1078). arXiv.

https://arxiv.org/abs/1406.1078

[23] Korczynski, M., & Duda, A. (2014). Markov chain

fingerprinting to classify encrypted traffic. In IEEE

Conference on Computer Communications

(INFOCOM) (pp. 781–789). IEEE.

https://doi.org/10.1109/INFOCOM.2014.6847993

[24] Lashkari, A. H., Draper-Gil, G., Mamun, M. S. I.,

& Ghorbani, A. A. (2017). Characterization of Tor

traffic using time-based features. In Proceedings of

the International Conference on Information

Systems Security and Privacy (ICISSP) (pp. 253–

262).

[25] Bhavya, P. S., Balaji, K., Banoth, N., &

Parhamfar, M. (2024). A light weight Mobile Net

SSD algorithm based identification and detection of

multiple defects in ceramic insulators. Journal of

Modern Technology, 2024, 59–74.

[26] Neelashetty, K., Goel, S., Inamdar, F.,

Dintakurthy, Y., Varanasi, L. N. S., & Krishna, V.

B. M. (2025). Optimal energy management in

https://doi.org/10.58496/BJML/2024/009
https://doi.org/10.58496/BJIoT/2024/010
https://arxiv.org/abs/1406.1078

K. Harinath and G. Kishor Kumar / IJCESEN 11-3(2025)4007-4018

4017

microgrids: A demand response approach with

Monte Carlo scenario synthesis and K-means

clustering. International Journal of Computational

and Experimental Science and Engineering, 11(1).

https://doi.org/10.22399/ijcesen.1023

[27] Shbair, W. M., Cholez, T., Francois, J., &

Chrisment, I. (2016, April). A multi-level

framework to identify HTTPS services. In

Proceedings of the IEEE/IFIP Network Operations

and Management Symposium (pp. 240–248).

[28] Cheng, J., He, R., Yuepeng, E., Wu, Y., You, J.,

& Li, T. (2020, December). Real-time encrypted

traffic classification via lightweight neural

networks. In Proceedings of the IEEE Global

Communications Conference (GLOBECOM) (pp.

1–6).

[29] Wang, W., Zhu, M., Wang, J., Zeng, X., & Yang,

Z. (2017, July). End-to-end encrypted traffic

classification with one-dimensional convolution

neural networks. In Proceedings of the IEEE

International Conference on Intelligence and

Security Informatics (ISI) (pp. 43–48).

[30] Lotfollahi, M., Siavoshani, M. J., Hossein Zade,

R. S., & Saberian, M. (2020). Deep packet: A novel

approach for encrypted traffic classification using

deep learning. Soft Computing, 24(3), 1999–2012.

[31] Krishna, V. B. M., Melkeri, V. S., Goel, S., &

Prasad, K. R. K. V. (2025). Two-stage energy

management for maximizing renewable energy

penetration. Engineering Review, 45(1).

https://doi.org/10.30765/er.2688

[32] Wang, W., et al. (2017). HAST-IDS: Learning

hierarchical spatial-temporal features using deep

neural networks to improve intrusion detection.

IEEE Access, 6, 1792–1806.

[33] Rezaei, S., Kroencke, B., & Liu, X. (2020). Large-

scale mobile app identification using deep learning.

IEEE Access, 8, 348–362.

[34] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep

residual learning for image recognition. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (pp. 770–778).

[35] Hochreiter, S., Bengio, Y., Frasconi, P., &

Schmidhuber, J. (2001). Gradient flow in recurrent

nets: The difficulty of learning long-term

dependencies.

[36] Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016).

Layer normalization. arXiv preprint

arXiv:1607.06450.

[37] Bahdanau, D., Cho, K., & Bengio, Y. (2014).

Neural machine translation by jointly learning to

align and translate. CoRR, abs/1409.0473.

[38] Britz, D., Goldie, A., Luong, M. T., & Le, Q. V.

(2017). Massive exploration of neural machine

translation architectures. CoRR, abs/1703.03906.

[39] Draper-Gil, G., Lashkari, A. H., Mamun, M. S. I.,

& Ghorbani, A. A. (2016, February).

Characterization of encrypted and VPN traffic

using time-related features. In Proceedings of the

2nd International Conference on Information

Systems Security and Privacy (ICISSP) (pp. 407–

414). Rome, Italy.

[40] Lin, X., Xiong, G., Gou, G., Li, Z., Shi, J., & Yu,

J. (2022, April). ET-BERT: A contextualized

datagram representation with pre-training

transformers for encrypted traffic classification. In

Proceedings of the ACM Web Conference 2022 (pp.

633–642). Lyon, France.

[41] Rogers, A., Kovaleva, O., & Rumshisky, A.

(2020). A primer in BERTology: What we know

about how BERT works. Transactions of the

Association for Computational Linguistics, 8, 842–

866.

[42] Hubel, D. H., & Wiesel, T. N. (1968). Receptive

fields and functional architecture of monkey striate

cortex. Journal of Physiology, 195, 215–243.

[43] Dos Santos, C., & Gatti, M. (2014, August). Deep

convolutional neural networks for sentiment

analysis of short texts. In Proceedings of COLING

2014, the 25th International Conference on

Computational Linguistics: Technical Papers (pp.

69–78). Dublin, Ireland.

[44] Simonyan, K., & Zisserman, A. (2014). Very deep

convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

[45] Lotfollahi, M., Siavoshani, M. J., Hossein Zade,

R. S., & Saberian, M. (2020). Deep packet: A novel

approach for encrypted traffic classification using

deep learning. Soft Computing, 24, 1999–2012.

[46] Zhao, Z., Chen, H., Zhang, J., Zhao, X., Liu, T.,

Lu, W., ... & Du, X. (2019, November). UER: An

open-source toolkit for pre-training models. In

Proceedings of EMNLP-IJCNLP 2019 (p. 241).

Hong Kong, China.

[47] Kingma, D. P., & Ba, J. (2014). Adam: A method

for stochastic optimization. arXiv preprint

arXiv:1412.6980.

[48] van Ede, T., Bortolameotti, R., Continella, A.,

Ren, J., Dubois, D. J., Lindorfer, M., ... & Peter, A.

(2020, February). Flowprint: Semi-supervised

mobile-app fingerprinting on encrypted network

traffic. In Proceedings of the Network and

Distributed System Security Symposium (NDSS).

San Diego, CA, USA.

[49] Panchenko, A., Lanze, F., Pennekamp, J., Engel,

T., Zinnen, A., Henze, M., & Wehrle, K. (2016,

February). Website fingerprinting at internet scale.

In Proceedings of NDSS. San Diego, CA, USA.

[50] Taylor, V. F., Spolaor, R., Conti, M., &

Martinovic, I. (2017). Robust smartphone app

identification via encrypted network traffic

analysis. IEEE Transactions on Information

Forensics and Security, 13, 63–78.

[51] Al-Naami, K., Chandra, S., Mustafa, A., Khan, L.,

Lin, Z., Hamlen, K., & Thuraisingham, B. (2016,

December). Adaptive encrypted traffic

fingerprinting with bi-directional dependence. In

Proceedings of the 32nd Annual Conference on

Computer Security Applications (pp. 177–188). Los

Angeles, CA, USA.

[52] Sirinam, P., Imani, M., Juarez, M., & Wright, M.

(2018, October). Deep fingerprinting: Undermining

website fingerprinting defenses with deep learning.

In Proceedings of the 2018 ACM SIGSAC

https://doi.org/10.22399/ijcesen.1023
https://doi.org/10.30765/er.2688

K. Harinath and G. Kishor Kumar / IJCESEN 11-3(2025)4007-4018

4018

Conference on Computer and Communications

Security (pp. 1928–1943). Toronto, ON, Canada.

[53] Liu, C., He, L., Xiong, G., Cao, Z., & Li, Z.

(2019, April). FS-Net: A flow sequence network

for encrypted traffic classification. In Proceedings

of the IEEE INFOCOM 2019 - IEEE Conference on

Computer Communications (pp. 1171–1179). Paris,

France.

[54] Shen, M., Zhang, J., Zhu, L., Xu, K., & Du, X.

(2021). Accurate decentralized application

identification via encrypted traffic analysis using

graph neural networks. IEEE Transactions on

Information Forensics and Security, 16, 2367–

2380.

[55] He, H. Y., Yang, Z. G., & Chen, X. N. (2020,

December). PERT: Payload encoding

representation from transformer for encrypted

traffic classification. In Proceedings of the 2020

ITU Kaleidoscope: Industry-Driven Digital

Transformation (ITU K) (pp. 1–8). Ha Noi,

Vietnam.

[56] Shiravi, A., Shiravi, H., Tavallaee, M., &

Ghorbani, A. A. (2012). Toward developing a

systematic approach to generate benchmark

datasets for intrusion detection. Computers &

Security, 31(3), 357–374.

[57] Dintakurthy, Y., Innmuri, R. K., Vanteru, A., &

Thotakuri, A. (2025). Emerging applications of

artificial intelligence in edge computing: A

comprehensive review. Journal of Modern

Technology, 1(2), 175–185.

[58] Al Barazanchi, I. I., Hashim, W., Thabit, R., &

Hussein, N. A. K. (2024, March). Advanced hybrid

mask convolutional neural network with

backpropagation optimization for precise sensor

node classification in wireless body area networks.

KHWARIZMIA, 2024, 17–31.

https://doi.org/10.70470/KHWARIZMIA/2024/004

[59] Alazawi, S. A. H., Abdulbaqi, H. A., & Ali, A. H.

(2024, August). CNN-based intrusion detection

software for network operating system

environment. BJIoT, 2024, 79–86.

https://doi.org/10.58496/BJIoT/2024/010

[60] Harinath, K. R., & Kumar, G. K. (2024).

Encrypted network traffic classification and feature

selection by ensemble of CNN and TLBO meta-

heuristic algorithm. In N. Singh, A. K. Bashir, S.

Kadry, & Y. C. Hu (Eds.), Proceedings of the 1st

International Conference on Intelligent Healthcare

and Computational Neural Modelling. ICIHCNN

2022 (pp. xxx–xxx). Springer.

https://doi.org/10.1007/978-981-99-2832-3_65

https://doi.org/10.58496/BJIoT/2024/010
https://doi.org/10.1007/978-981-99-2832-3_65

