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Abstract:  
 

As encryption technology rapidly progresses and applications experience exponential 

growth, the research focus on network traffic classification has intensified. Current 

methods for classifying encrypted traffic exhibit certain constraints. Traditional 

techniques, including machine learning, heavily depend on feature engineering. Deep 

learning approaches are vulnerable to the quantity and distribution of labeled data, 

while pretrained models predominantly emphasize global traffic features, neglecting 

local features. In addressing these challenges, we introduced a methodology that 

incorporates both Bidirectional Encoder Representations from Transformers (BERT) 

and Convolution Neural Networks (CNN). To underscore both global traffic patterns 

and local features, we leverage the BERT and CNN mechanisms, respectively. Our 

approach attains state-of-the-art performance on the publicly accessible ISCX-VPN 

dataset for both traffic service and application identification tasks, achieving impressive 

F1 scores of 99.11% and 99.41%, respectively, in these domains. The experimental 

outcomes affirm that our method significantly enhances the performance of encrypted 

traffic classification. 

 

1. Introduction 
 

The classification of network traffic into distinct 

categories, known as traffic classification, holds 

significant importance in a variety of applications 

[1]. These applications include managing Quality of 

Service (QoS), pricing strategies, resource 

allocation planning, and the detection of malware 

and intrusions, etc. Recognizing its significance, a 

wide array of approaches has been devised to cater 

to the evolving and diverse requirements of various 

application scenarios. Notably, recent 

developments in communication technologies, 

encompassing encryption and port obfuscation, 

have introduced further complexities to the realm of 

network classification. 

Traffic classification techniques have undergone 

substantial evolution over time [2]. The initial and 

most straightforward method involved using port 

numbers, although its accuracy has diminished due 

to newer applications employing well-known port 

numbers to conceal their traffic or bypassing 

standard registered port numbers. Despite its 

decreased accuracy, port numbers are still 

commonly used, either on their own or in 

combination with other attributes, in practical 

applications. The subsequent generation of traffic 

classifiers shifted their focus to packet content, 

utilizing data packet inspection (DPI) to identify 

patterns or keywords within data packets. These 

DPI methods are primarily effective for 

unencrypted traffic but come with a high 

computational overhead. The methods such as port 

numbers and DPI based for traffic classification are 

not capable enough for modern traffic 

circumstances towards encrypted traffic [3]. 

In light of the rapid advancement in internet 

technology and the growing emphasis on data 

privacy, contemporary network application traffic 

commonly undergo encryption using a range of 

encryption protocols to guarantee data security and 

privacy [4,5]. Leading the pack among these 

encryption protocols are Secure Socket Layer 

(SSL) and its successor, Transport Layer Security 

http://dergipark.org.tr/en/pub/ijcesen
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(TLS) [7,40]. According to a recent report from 

Google, as of October 2021, 98% of web pages 

loaded on Chrome have implemented SSL/TLS 

encryption. 

The SSL/TLS communication process comprises 

two main stages: the handshake and the formal data 

transmission. During the initial handshake, the 

client initiates the process by sending a Client Hello 

to the server, encompassing a random number and 

the supported cipher suites. The server responds 

with a Server Hello, containing the agreed-upon 

cipher suite, server certificate, and another random 

number. Subsequently, both parties collaboratively 

derive a final master key using the exchanged 

information. The server then concludes the 

handshake by sending a Server Finish to the client. 

In the second stage, utilizing the established master 

key, both parties employ symmetrical encryption 

for data transmission, enhancing decryption speed 

compared to asymmetric encryption methods. 

The primary difficulty in classifying encrypted 

traffic lies in effectively characterizing the 

encrypted data stream. In contrast to plaintext 

network traffic, which can be identified through 

deep packet inspection, encrypted packets defy 

classification based on their content alone. While 

the Server Name Indication (SNI) field in TLS 

handshake packets can occasionally offer insights 

into the nature of the traffic, it’s worth noting that 

not all cases include complete handshake packets. 

An encouraging approach to tackle encrypted 

traffic classification involves the application of 

machine learning algorithms [9-11]. Nevertheless, 

the majority of these techniques rely on manually 

crafted flow features, leading to the omission of 

crucial packet details and hindering the possibility 

of fine-grained operations. Consequently, this 

compromises the accuracy of classification. 

Addressing this challenge involves the 

comprehensive amalgamation of information from 

various components within TLS traffic to achieve a 

more precise classification. When examining 

network packets, one must consider the IP, TCP, 

TLS headers, payload, and other elements. 

Simultaneously, network flows comprise 

handshake, transmission, and communication finish 

packets. In terms of informational content, network 

traffic encompasses flow details, statistical data, 

packet lengths, TLS message types, and more. 

Numerous prior studies have focused on the 

integration of diverse information sources, such as 

incorporating certificate packet lengths into hand-

designed features [12] [13] or appending TLS 

message types to packet length sequences [14]. 

Despite these efforts, effective methods for 

integrating a diverse array of information sources 

remain elusive to date [15]. 

To enhance the classification accuracy of encrypted 

traffic, preserve information integrity to the fullest 

extent, and introduce finer packet-level operations, 

this paper introduces a model that incorporates both 

transformer and convolutional neural network 

(CNN) architectures. The rationale behind 

employing the multi-head self-attention mechanism 

in transformers is to concentrate on the data content 

from various viewpoints, aligning with the 

aforementioned challenges. Further the CNN is 

used for classifying the network traffic into various 

categories. 

The rest of the paper is organized as follows. The 

related work on encrypted traffic classification is 

given in Section 2. Section 3 gives the problem 

definition and also the proposed work. Section 4 

discusses the datasets used for various experiments. 

Section 5 gives the experimental analysis on the 

datasets used for encrypted traffic classification. 

The paper is concluded in Section 6. 
 

2. Literature Survey 
 
This section provides an overview of relevant 

survey literature encompassing diverse encrypted 

traffic classification methods. The review covers 

traditional approaches, methods based on message 

types, length sequences, message types, statistics, 

and end-to-end techniques for traffic classification. 

The Conventional approaches comprise port-based 

methods [16] and payload-based methods [17]. 

Port-based methods rely on identifying applications 

through a port registration list provided by the 

Internet Assigned Numbers Authority (IANA). 

However, this method’s reliability diminishes as 

more applications utilize dynamically allocated 

ports or employ common communication protocol 

ports for camouflage. The payload-based method, 

also known as deep packet detection (DPI), 

classifies applications by detecting key strings in 

network traffic. The work presented in [18] 

employed application-level signatures to classify 

P2P application traffic, while the research in [8] 

utilized statistical application signatures. 

Unfortunately, both methods are limited to handling 

unencrypted network traffic and prove entirely 

ineffective for encrypted traffic. 

Length-based methods abstract network flows into 

sequences of lengths, employing Markov models or 

other machine learning techniques to characterize 

these sequences. The rationale behind utilizing 

length sequences as packet representations lies in 

the significant variations in packet size patterns 

among different application traffics. For instance, 

upload/download type traffic typically exhibits 

larger average packet sizes compared to chat-type 

traffic. An example of such an approach is App 
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scanner, as introduced in [19] and [20], which 

leverages a packet length vector to classify mobile 

applications. Employing the Random Forest 

algorithm, it successfully categorizes the 110 most 

popular bot-generated Android applications, 

achieving an impressive application re-

identification accuracy of up to 96% in optimal 

conditions. Recently, in [53], they proposed FS-

Net, a framework for classifying encrypted traffic 

using deep neural networks. FS-Net employs packet 

length sequences as input, utilizes bidirectional 

GRU [22] for feature encoding, and introduces a 

reconstruction mechanism in AutoEncoder to 

ensure the validity of the learned features. While 

length sequences have demonstrated effectiveness 

in encrypted traffic classification across various 

prior works, relying solely on packet length for 

representation is a simplistic approach that may 

overlook important details. In cases where packet 

lengths are similar or identical (e.g., packet 

fragmentation in the IP layer), the length sequence 

loses its discriminative power. 

The SSL/TLS packet headers incorporate a field 

identifying the message type within each packet. 

Initially, Korczyriski et al. [23] introduced a 

unidirectional firstorder homogeneous Markov 

model for encrypted traffic classification, based on 

the sequence of message types. Subsequently, Shen 

et al. [13] proposed a second-order Markov model 

that integrates the certificate packet length with the 

length of the initial communication packet. 

However, this approach is not without limitations: 

i) the Markov model relies on a small number of 

data points (two or three-time steps) for training, 

resulting in a lack of comprehensive sequential 

information; ii) the limited number of message 

types leads to overlapping issues [15]. Some studies 

have attempted to address these challenges by 

combining length sequences and message types 

[15], offering a partial solution to the 

representational limitations of a single message 

type feature. Beyond message types, several other 

fields, including cipher suite, version, and 

certificate information, can convey information 

about encrypted HTTPS traffic. Nonetheless, these 

methods are specific to SSL/TLS traffic and are not 

applicable to a broad spectrum of protocols, 

including unencrypted HTTP, RTP, SRTP, 

MTProto, and various general mobile application 

classifications. 

Statistical feature-based methods in network traffic 

analysis aim to derive flow level statistical features, 

subsequently employing machine learning 

algorithms for classification. These features 

typically like average packet length, average time 

interval, and transmission rate. Open-source tools 

like CICFlowMeter [24] and Joy [25] facilitate the 

extraction of such features. Zhu et al. [26] 

introduced the Attention based Multi-Flow LSTM 

(AMF-LSTM) model for network attack detection, 

leveraging multiple flows to incorporate historical 

network information. Their approach utilized 

Attention Mechanism (AM) to identify network 

traffic with significant contributions to 

classification. Shbair et al. [27] proposed a two-

level hierarchical framework for traffic 

classification. This framework also introduced a 

new set of statistical features for categorizing 

services operating over HTTPS connections. 

Evaluation results indicated that 50 out of the 68 

considered HTTPS services achieved a recall rate 

above 95%. Despite their effectiveness, these 

approaches have limitations, including highly 

abstracted features that hinder fine-grained 

operations (such as learning the relationship 

between two packets). Additionally, the extraction 

of statistical features often requires observing the 

entire network flow until its completion, rendering 

real-time traffic classification impractical. 

Recent efforts have explored strategies for end-to-

end encrypted traffic classification, where” end-to-

end” refers to the direct utilization of raw network 

packet bytes without manually designed features. 

This approach maximizes the potential of neural 

networks to autonomously discover hidden 

features. Currently, Convolutional Neural Networks 

(CNN) serve as the primary method for end-to-end 

traffic classification [28], Wang et al. [29] proposed 

a technique involving the conversion of packets 

into images, processed with 1D-CNN, achieving 

notable performance on the ISCX VPNNon-VPN 

traffic dataset. This dataset was also assessed in 

[30], employing Stacked Autoencoders (SAE) and 

CNN. The approach retained the IP header and the 

initial 1480 bytes of each IP packet as input, 

achieving over 90% accuracy in classifying 17 

applications at the packet level. However, pure 

CNN exhibits limitations in representing network 

flow characteristics as it cannot capture interactive 

information across different time steps. Addressing 

this, [31] and [32] initially employed CNN to learn 

features from the first 784 bytes of each packet, 

then combined these features using Long Short-

Term Memory (LSTM) to obtain the flow feature 

vector. Rezaei et al. [33] adopted a similar strategy, 

learning the header and payload of the first six 

packets and achieving effective identification of 

ambiguous flows. Despite the integration of more 

complex joint models, these works fundamentally 

represent single-modal end-to-end learning 

frameworks with inherent challenges related to 

weak feature representation.  

 

3. Methodology 
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A network packet comprises multiple bytes, and the 

aggregation of packets occurring within a defined 

time frame forms the network traffic set denoted as 

S. Let S can be defined as follows: 

𝑆 =  {𝑃1 , 𝑃2 , . . . , 𝑃𝑚}, 𝑚 =  |𝑆|   (1) 

Each packet 𝑃𝑖 , can be defined as  

𝑃𝑖  =  {𝑋𝑖 , 𝐵𝑖  , 𝑇𝑖 }, 1 < 𝑖 < 𝑚; 

𝑋𝑖

= {𝑆𝑟𝑐𝐼𝑃𝑖, 𝐷𝑠𝑡𝐼𝑃𝑖, 𝑆𝑟𝑐𝑃𝑜𝑟𝑡𝑖 , 𝐷𝑠𝑡𝑃𝑜𝑟𝑡𝑖 , 𝑃𝑟𝑜𝑡𝑐𝑜𝑙𝑖}. 

𝐵𝑖 = {𝑏𝑦𝑡𝑒1, 𝑏𝑦𝑡𝑒2, . . . , 𝑏𝑦𝑡𝑒𝑝}, 

0𝑥00 <= 𝑏𝑦𝑡𝑒𝑘 <= 0𝑥𝑓𝑓, 1 <= 𝑘 <= 𝑝. 

𝑇𝑖 > 0; 

Therefore, a packet 𝑃𝑖 can be represented with a 5-

tuple 𝑋𝑖, byte content 𝐵𝑖 and the start time 𝑇𝑖. The 

collection of packets with the same X can be called 

as Flow, the 𝑘-th flow can be defined as follows 

(2). 

 𝑓𝑘 = {𝑃𝑘
 1, 𝑃𝑘

 2, . . . 𝑃𝑘
 𝑙},        𝑙 = |𝑓𝑘| (2) 

In (2), 

 

𝑋𝑘
 1 =  ⋯  = 𝑋𝑘

 𝑙     𝑎𝑛𝑑     𝑇𝑘
 1 < ⋯ < 𝑇𝑘

 𝑙 

 

Hence, the original traffic set can also be 

represented as, 

 
 𝑅′ =  {𝑓1, 𝑓2, . . . 𝑓𝑘}, 𝑘 = |𝑅′|  (3) 

 

For the given observed packet sequence R and the 

presence of N applications, our objective is to 

develop a model ϕ (fl) that can predict the label Ll of 

a network flow fl, 1 <= Ll <= N. 

 

3.1 BERT: 

 

The introduction of the BERT model by the Google 

AI team marked a significant milestone in the field 

of Natural Language Processing (NLP), propelling 

NLP research forward dramatically [41]. BERT 

demonstrated outstanding performance in the 

Stanford Question Answering Dataset 1.1 (SQuAD) 

challenge [41], a prominent machine reading 

comprehension competition. It surpassed human 

performance across the board in two evaluation 

metrics and exhibited excellence in eleven different 

NLP tasks. BERT not only ushered in a new era of 

NLP but also gained widespread popularity in 

various other domains. Its effectiveness extended to 

the field of cyber-security, where it demonstrated 

exceptional performance. 

 

3.2 Convolutional Neural Network: 

 

The design of convolutional networks draws 

inspiration from the biological structure of vision 

[42], making convolutional neural networks 

(CNNs) particularly adept at learning local features 

or features with non-stationary locations [1]. CNNs 

have demonstrated exceptional performance across 

diverse domains, including natural language 

processing [43] and machine vision [44]. In recent 

years, CNNs have also exhibited remarkable 

proficiency in handling encrypted traffic. For 

instance, in the utilization of DeepPacket, as 

highlighted in [45], CNNs achieved a notably high 

accuracy rate on the ISCX dataset. 

In image classification tasks, successive 

convolutional layers of CNNs progressively extract 

features from individual pictures. Notably, features 

extracted in the initial convolutional layers tend to 

be relatively straightforward, such as edges and 

curves. As the process advances to deeper 

convolutional layers, the extracted features become 

more intricate. The features obtained in the 

intermediate layers of the network often prove to be 

complex and challenging for humans to interpret 

[57]-[59]. 

  

3.3 Fully Connected Layer: 

 

In deep learning models, the fully connected layer 

(FC) typically functions as a classifier, translating 

the data features acquired by the model into the 

labeled space. The fundamental operation of the 

fully connected layer involves a matrix–vector 

product, expressed by the following formula: 

 

  𝑌 =  𝑊 ×  𝑋 +  𝐵   (4) 

 

In (4), W represents the weight of the fully 

connected layer, while B denotes the bias of the 

fully connected layer. The input and output vectors 

are represented by X and Y, respectively.   

The BERT attention mechanism is employed to 

capture packet-level feature vectors, which are 

subsequently transformed into byte feature input 

vectors through a convolutional layer. This process 

generates locally salient features. Following the 

convolutional operations, the enriched feature 

vector, containing substantial information, serves as 

the input for a fully connected layer tasked with 

traffic prediction. 

In the proposed framework, an encoder is employed 

to transform a series of symbolic representations 
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(x1,...xn) into a corresponding sequence of 

continuous representations denoted as z = (z1,...zn). 

Subsequently, utilizing the obtained continuous 

representation z, a decoder is responsible for 

generating an output sequence (y1,...ym) of symbols 

in a step-by-step fashion. The model operates in an 

autoregressive manner, as detailed in reference 

[34]-[35], wherein the generation of each symbol at 

a given step involves the incorporation of 

previously generated symbols as supplementary 

input. The Transformer adopts the overall structure 

by employing stacked self-attention and point-wise, 

fully connected layers in both the encoder and 

decoder. These components are illustrated in the 

left and right halves of Figure 2, respectively. 

The transformer model architecture consists of 

various components such as encoder, decoder, 

attention mechanism etc. and each of these is 

discussed as follows. The encoder consists of a 

stack comprising N = 6 identical layers, each 

containing two sub-layers. The initial sub-layer is a 

multi-head self-attention mechanism, while the 

second is a straightforward, position-wise fully 

connected feed-forward network. A residual 

connection [11] encircles each of these sub-layers, 

followed by layer normalization [36]. In essence, 

the output of each sub-layer is obtained through the 

expression LayerNorm(x + Sublayer(x)), where 

Sublayer(x) represents the function executed by the 

sub-layer itself. To accommodate these residual 

connections, all sub-layers within the model, 

including the embedding layers, generate outputs of 

dimension dmodel = 512. The decoder is structured 

with a stack of N=6 identical layers. While each 

encoder layer comprises two sub-layers, the 

decoder introduces a third sub-layer. This additional 

sub-layer conducts multi-head attention over the 

output of the encoder stack. Similar to the encoder 

configuration, residual connections surround each 

sub-layer, followed by layer normalization. 

Notably, the self-attention sub-layer in the decoder 

stack to prevent positions from attending to 

subsequent positions. This masking, coupled with 

the offset of one position in the output embeddings, 

ensures that predictions for position i are solely 

influenced by the known outputs at positions 

preceding i. 

An attention function can be defined as a 

mechanism that takes a query and a collection of 

key-value pairs as input, producing an output. In 

this context, the query, keys, values, and output are 

all vector representations. The resulting output is 

determined through a weighted summation of the 

values, with each value’s weight determined by a 

compatibility function that evaluates the 

relationship between the query and its 

corresponding key. 

For Scaled Dot-Product Attention, the input 

comprises queries and keys, both of dimension dk, 

and values with dimension dv. The computation 

involves obtaining dot products between the query 

and all keys, dividing each result by dk, and 

applying a softmax function to derive weights 

assigned to the values. In practical applications, the 

attention function is concurrently computed for a 

set of queries grouped into a matrix Q. 

Correspondingly, the keys and values are organized 

into matrices K and V. The resultant matrix of 

outputs is calculated as follows (5). 

 

 

 
 

Figure. 1 Transformer-Model-Architecture. 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 )  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥( 
𝑄𝐾𝑇

√𝑑𝑘
 )𝑉  (5) 

 

Two widely employed attention functions are 

additive attention [37] and dot-product 

(multiplicative) attention. Additive attention 

calculates the compatibility function using a feed-

forward network featuring a single hidden layer. 

Although they share similar theoretical complexity, 

in practical terms, dot-product attention proves to 

be considerably faster and more space-efficient. 

This efficiency arises from its implementation 

utilizing highly optimized matrix multiplication 

code. Notably, while the two mechanisms exhibit 

comparable performance for small values of dk, 

additive attention surpasses dot-product attention 

without scaling for larger values of dk [38]. 
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For the Multi-Head attention function, rather than 

executing a singular attention function with     

dmodel-dimensional keys, values, and queries, we 

have observed advantages in linearly projecting the 

queries, keys, and values h times. Each projection 

involves distinct learned linear transformations, 

resulting in dimensions dk, dk and dv, respectively. 

The attention function is then applied independently 

to these projected versions of queries, keys, and 

values in parallel, producing output values of 

dimension dv. These outputs are concatenated and 

subjected to an additional projection, ultimately 

yielding the final values. The use of multi-head 

attention enables the model to concurrently focus 

on information from various representation 

subspaces at different positions. A single attention 

head, on the other hand, hinders this capability by 

averaging the information. 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) =
𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (6) 

 

In (6),  

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝑘 , 𝑉𝑊𝑖
𝑉)   (7) 

In (7), the projections are parameter matrices      

𝑊𝑖
𝑄  ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝐾  ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖
𝑉  ∈

 ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣𝑎𝑛𝑑 𝑊𝑂 ∈ ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 
 

In this work we employ h = 6 parallel attention 

layers, or heads. For each of these we use dk = dv = 

dmodel/h = 64. Due to the reduced dimension of each 

head, the total computational cost is similar to that 

of single-head attention with full dimensionality. 

4. Datasets 
 

To assess the efficacy of our approach, we 

conducted experiments utilizing two datasets such 

as the ISCX VPN-nonVPN traffic dataset (ISCX-

VPN) [39] provided by the University of New 

Brunswick and ISCX 2012 IDS dataset [56]. The 

first dataset comprises raw traffic data generated by 

various applications, each labeled based on the 

actions performed during the traffic capture (e.g., 

chats, file transfers, video calls) and the originating 

application (e.g., Youtube, Facebook, Netflix). Our 

experiments focused on service and application 

identification tasks using this dataset. The service 

categories encompassed 12 distinct categories, 

while the applications were classified into 17 

categories, as detailed in Table 1.  

To streamline the raw traffic data and adapt it to 

our model’s input format, we initially employed the 

Datagram2Token tool [40]. This involved 

segmenting the dataset at the packet level and 

removing dynamic host configuration protocol 

(DHCP) and address resolution protocol (ARP) 

packets lacking pertinent information about the 

originating applications. To address potential bias 

inferences stemming from 

 

 
Figure. 2 Proposed Model Architecture. 

 

robust discriminative information in packet 

headers, such as port numbers and IP addresses, we 

excluded the protocol ports of the TCP header, IP 

header, and Ethernet header. Subsequently, we 

utilized a bi-gram model to encode the resulting 

hexadecimal sequences [40]. To manage data 

volume, we randomly selected a maximum of 5000 

packets from each class, maintaining a uniform 

sample size across all classes, except for the AIM-

Chat and ICQ classes in the application 

identification task, where sample sizes were 1340 

and 823, respectively. The dataset, aligned with 

ET-BERT [40], was then divided into training, 

validation, and test datasets in an 8:1:1 ratio. Our 

preprocessing tailored the ISCX-VPN dataset to 

suit the characteristics of both service and 

application identification tasks, leading to the 

creation of distinct ISCX-VPN-Service and ISCX-

VPN-App datasets. The statistical information of 

the datasets is given in Table 2. 

The second dataset utilized for assessing the 

efficacy of the proposed model in intrusion 

detection is derived from the ISCX 2012 IDS 

dataset [56]. This dataset encompasses seven days 

of network traffic, categorized into five classes: 
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Normal, Brute Force SSH, DDoS, HttpDoS, and 

Infiltrating. For simplicity, we exclusively focus on 

days with malware traffic. As malware traffic 

typically exhibits a smaller scale compared to 

normal traffic in real-world scenarios, we opt not to 

apply any normalization. 

Table 1. Details of the Dataset 

Dataset Service Application 

ISCX-VPN Chat  AIM-Chat 

 Email  Email  

 File Transfer  Facebook  

 P2P  Gmail  

 Streaming Hangout 

 VoIP  ICQ  

 VPN-Chat  Netflix  

 VPN-Email  SCP  

 VPN-FT  Skype  

 VPN-P2P  Spotify  

 VPN-Streaming  Tor  

 VPN-VOIP Torrent  

  Vimeo  

  VoipBuster 

  VPN-Ftps  

  VPN-Sftp 

  Youtube 

 

techniques to the dataset. Table 3 illustrates the 

structure of the chosen dataset. Subsequently, this 

selected dataset is partitioned into training and 

testing sets in a 9:1 ratio for each class. 

 

Table 2. Statistical Details of the Dataset1. 

Dataset No of Samples No of Labels 

ISCX-VPN-Service 60,000 12 

ISCX-VPN-App 77,163 17 

 

Table 3. Statistical Details of the Dataset2: ISCX 2012 

IDS 

Dataset Class Names No of Samples 

ISCX 2012 IDS Normal 848306 

 Brute Force SSH 6964 

 DDoS 22121 

 HttpDoS 3482 

 Infiltrating Transfer 10044 

 

5. Experiments 

 

To enhance the performance of encrypted traffic 

classification, we introduced a methodology 

integrating BERT and CNN. The evaluation of this 

model utilized the ISCX-VPN dataset, emphasizing 

traffic service and application identification tasks. 

This section presents the experimental results. 

The experiments were conducted on the Ubuntu 

20.04 operating system, employing a 14-core Intel® 

Xeon® Gold 6330 CPU @ 2.00 GHz as the 

processor and a single NVIDIA 3090 graphics 

processing unit with a 24 GB memory size. 

Throughout all experiments, PyTorch version 

1.11.0 and universal encoder representations [46] 

were utilized. Model parameters included a 

maximum input length of 128 tokens, a batch size 

of 32, 16 epochs for training, a learning rate set at 

2×10−5, and the choice of the AdamW [47] 

optimizer. 

We employed four evaluation metrics: accuracy 

(AC), precision (PR), recall (RC), and F1 score 

(F1). During model evaluation, the category of 

interest typically served as the positive class, with 

other categories considered as negative classes. 

True Positives (TP) represented the number of 

correctly identified positive samples, False 

Positives (FP) denoted the number of incorrectly 

identified negative samples, True Negatives (TN) 

indicated the number of correctly identified 

negative samples, and False Negatives (FN) 

referred to the number of wrongly identified 

positive samples. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇 𝑃 + 𝑇 𝑁

 𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁
 (8) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑃
     (9) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇 𝑃 

𝑇 𝑃 + 𝑇 𝑁
              (10) 

 𝐹1 −  𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
      (11) 

 

The sequence length stands as a crucial parameter 

in the BERT model, allowing for sequences up to a 

maximum of 512. In cases where it exceeds this 

predefined length, the BERT model undergoes 

truncation, while shorter sequences undergo a fill 

token operation. The choice of sequence length 

significantly impacts model performance. 

Excessive values may introduce nonsensical tokens, 

while overly short lengths risk information loss in 

traffic data. Hence, a judicious selection of 

sequence length is imperative. Table 4 presents our 

model’s accuracy across different sequence lengths. 

 

Table 4. Impact of Sequence Length in terms of 

Accuracy. 

Sequence Length Service Identification App Identification 

8 68.24 92.91 
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16 98.89 99.52 

32 99.12 99.14 

64 99.01 99.14 

128 99.28 99.76 

 

Notably, an increase in sequence length generally 

led to improved overall accuracy, peaking at a 

sequence length of 128. Consequently, we opted to 

set the maximum 

Table 5. Impact of No of CNN Layers in terms of 

Accuracy. 

Number of CNN 

Layers 

Service 

Identification 

App 

Identification 

1 98.82 99.63 

2 99.12 99.69 

3 99.39 99.76 

4 98.96 99.73 

 

sequence length at 128 for optimal model 

performance. In Table 5, the model’s performance 

is displayed across different numbers of CNN 

layers for both service and application 

identification. With an increase in the number of 

layers, there was a corresponding rise in model 

accuracy. Optimal performance is achieved when 

utilizing three layers. However, beyond three 

layers, the model’s performance either decreased or 

remained unchanged. This is attributed to the 

introduction of excessive parameters and 

computations, negatively impacting the model. 

Consequently, the decision was made to set the 

number of CNN layers in our model to three for an 

optimal balance between accuracy and 

computational efficiency. 

 

6.  Comparison Study 

 

This paper selected 12 widely acknowledged 

methods in encrypted traffic classification as 

benchmark approaches. These methods utilize data 

that aligns with the data employed in our own 

methodology are: Fingerprint construction 

approach: FlowPrint [48]; Statistical feature 

approaches: AppScanner [50], CUMUL [49], BIND 

[51], and k-fingerprinting (K-fp) [54]; Deep 

learning approaches: deep fingerprinting (DF) [52], 

FS-Net [53], GraphDApp [54] and DeepPacket 

[45], CNN-TLBO[60]; 

 

Table 6. Comparison results on service identification 

tasks. 

Method Accuracy Precision Recall F1-Score 

AppScanner 71.82 73.39 72.25 71.97 

CUMUL 56.1 58.83 56.76 56.68 

BIND 75.34 75.83 74.88 74.2 

K-fp 64.3 64.92 64.17 63.95 

FlowPrint 79.62 80.42 78.12 78.2 

DF 71.54 71.92 71.04 71.02 

FS-Net 72.05 75.02 72.38 71.31 

GraphDApp 59.77 60.45 62.2 60.36 

DeepPacket 93.29 93.77 93.06 93.21 

CNN-TLBO 97.00    

Proposed 99.28 99.14 99.13 99.14 

 

Tables 6 and 7 present the experimental outcomes 

for our proposed model and other models in service 

identification and application identification using 

the ISCXVPN dataset. For the service identification 

task, our approach demonstrated superior 

performance across four evaluation metrics, 

outperforming all baseline models. In the 

Table 7. Comparison results on application 

identification tasks. 

Method Accuracy Precision Recall F1-Score 

AppScanner 62.66 48.64 51.98 49.35 

CUMUL 53.65 41.29 45.35 42.36 

BIND 67.67 51.52 51.53 49.45 

K-fp 60.7 54.78 54.3 53.03 

FlowPrint 87.67 66.97 66.51 65.31 

DF 61.16 57.06 47.52 47.99 

FS-Net 66.47 48.19 48.48 47.37 

GraphDApp 63.28 59 54.72 55.58 

CNN-TLBO 97.00    

DeepPacket 97.58 97.85 97.45 97.65 

Proposed 99.76 99.48 99.59 99.52 

 

application identification task, our method excelled 

by surpassing baseline models in accuracy, recall, 

and F1 values, ultimately achieving the top 

performance. 

Table 8 and Table 9 shows the performance of the 

proposed method for each type of encrypted traffic 

service identification and also for encrypted traffic 

application identification respectively. Upon 

thorough observation and analysis, we noted that 

relying solely on the CNN model yielded 

suboptimal performance. This inadequacy stems 

from CNN’s efficiency in capturing local features 

while neglecting global features. In contrast, the 

BERT model, equipped with a multi-head attention 

mechanism, excels at extracting global features. By 

leveraging the strengths of both models, we 

enhance the overall performance of encrypted 

traffic classification. 

Table 8. Performance for each type of encrypted traffic 

service identification. 

Class Precision Recall F1-Score 
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Chat 98.2 99.1 98.6 

Email 99.1 97.9 98.5 

File-Transfer 100 99.6 99.8 

P2P 99.9 100 99.9 

Streaming 99.9 99.8 99.8 

VoIP 99.6 99.8 99.6 

VPN-Chat 99.6 99.4 99.6 

VPN-Email 99.6 100 99.8 

VPN-FT 99.5 97.4 98.4 

VPN-P2P 99.9 100 99.9 

VPN-Streaming 99.9 99.8 99.8 

VPN-VoIP 97.4 99.2 98.6 

 

7. Conclusion 

 
In this paper, we introduced a novel model for 

encrypted traffic classification, leveraging both 

BERT and CNN. Our model utilizes the BERT 

approach to extract global 

Table 9. Performance for each type of encrypted traffic 

application identification 

Class Precision Recall F1-Score 

AIM Chat 99.6 98.6 99.2 

Email 99.6 100 99.8 

Facebook 99.5 99.2 99.1 

Gmail 99.1 99.4 99.1 

Hangout 100 99.6 99.8 

ICQ 95.6 97.9 97.2 

Netflix 100 100 100 

SCP 100 99.6 99.7 

Skype 99.6 99.8 99.6 

Spotify 100 100 100 

Tor 100 100 100 

Torrent 99.2 99.9 99.5 

Vimeo 100 100 100 

VoipBuster 100 98.9 99.6 

VPN-Ftps 100 100 100 

VPN-Sftp 100 99.8 99.9 

Youtube 100 100 100 

 

Table 10. Performance for each type of intrusion 

detection 

Class Precision Recall F1-Score 

BFSSH 99.92 99.84 99.18 

DDoS 98.74 98.96 98.96 

HttpDoS 98.59 99.81 99.12 

Infiltrating 98.71 98.84 98.16 

 

features and incorporates the CNN model to capture 

local features. The resulting data is then input into 

the classifier for predicting the corresponding class 

of the encrypted traffic. Experimental results 

demonstrate that our model attains state-of-the-art 

performance in service identification and encrypted 

traffic application recognition tasks on the ISCX-

VPN dataset, achieving remarkable accuracy rates 

of 99.12% and 99.65%, respectively. While our 

approach exhibits superior performance, it is not 

without limitations. Our focus on VPN encrypted 

traffic excludes considerations for the 

characteristics of other encrypted traffic and the 

attributes of malicious traffic. Future research will 

extend our method to encompass a broader range of 

more traffic types. 
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