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Abstract:  
 

Optimizing network performance and resource allocation fairness in distributed systems 

requires load balancing efficiency. The main goal is to design and deploy Linear 

Programming (LP) methods in Weighted Server Cluster Load Balancer (WSCLB) to 

accomplish this goal. These methods reallocate jobs between nodes to reduce load 

distribution discrepancies, avoiding bottlenecks and boosting system performance. The 

purpose is to balance load, so each node runs at optimum capacity, lowering latency and 

improving distributed system resilience. The solution uses LP to optimize load 

distribution in WSCLB, creating a more robust and efficient network that can handle 

variable demand without performance deterioration. The study emphasizes mathematical 

optimization's role in current distributed system load balancing. The first instance of 

Load_Distribution_Pre-Optimization showed 5 load levels for 5 nodes. In load level 1, 

the top and lower values are 93 and 15, in load level 2, 87 and 21, in load level 3, 88 and 

24, in load level 4, 75 and 10, and in load level 5, 89 and 44. In Load_Distribution_Post-

Optimization 2, 5 load levels for 5 nodes were observed. In load level 1, the top and lower 

values are 93 and 29, in load level 2, 96 and 10, in load level 3, 72 and 49, in load level 

4, 94 and 42, and in load level 5, 91 and 14. 

 

1. Introduction 
 

To   resource utilization and guarantee consistent 

performance across all nodes in a network, load 

balancing in distributed systems must be efficient. 

The need for dynamic and scalable solutions is 

growing in dispersed networks, and conventional 

load balancing approaches may not be able to keep 

up. One possible solution to these problems is to use 

LP methods, which provide a mathematical basis for 

maximizing the distribution of available resources. 

The goal is to improve the efficiency of load 

balancing by using LP inside the WSCLB 

framework. The main objective is to Optimize load 

distribution across different nodes in a distributed 

system by integrating LP methods into the WSCLB 

framework. One way to tackle load balancing is by 

using LP models. These models may be solved to 

find the best way to allocate resources. The goal of 

implementing these strategies is to improve load 

balancing procedures by making resource 

distribution more efficient and adaptable according 

to the network's present needs and limitations. 

Incorporating LP into the WSCLB framework aims 

to provide a more rigorous and scalable solution than 

conventional load balancing approaches, which have 

their limits. By Optimizing load distribution in a 

mathematically rigorous and practically relevant 

method, this technique attempts to boost overall 

network efficiency and performance. Distributed 

systems are anticipated to become more stable and 

dependable with the use of LP approaches, which are 

anticipated to provide notable advancements in load 

balancing. 

Objective: As the complexity of networks grows, 

optimizing load balancing in distributed systems 

http://www.ijcesen.com/
http://dergipark.ulakbim.gov.tr/ijcesen
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becomes more important for keeping performance 

and resource efficiency high. Due to the ever-

changing nature of contemporary networks, more 

complex methodologies are typically required for 

load balancing than the more traditional ones. The 

goal of integrating LP into the WSCLB framework 

is to provide a flexible and scalable solution for load 

distribution, which will help overcome the limits of 

previous approaches. The goal is to make distributed 

systems more efficient and effective at managing 

their resources by improving load balancing, which 

in turn improves network performance and 

dependability. Load balancing tactics stand to 

benefit from this integration, which should lead to an 

improved method of maximizing the stability and 

efficiency of networks. 

Work Contribution: Optimizing performance and 

resource utilization becomes more important as 

network complexity increases, and one crucial 

component of distributed systems is effective load 

balancing. The ever-changing needs of 

contemporary networks may be too much for 

conventional approaches, calling for the 

development of new, more sophisticated strategies. 

One useful approach for enhancing load balancing 

efficiency is linear programming, which can tackle 

complicated optimization issues. The current work 

advances load balancing algorithms by 

incorporating LP techniques into the WSCLB 

framework. Improving load balancing procedures 

has never been easier than with the help of LP used 

in the WSCLB framework. Through its insights into 

mathematical optimization and its capacity to 

enhance network efficiency and flexibility, this 

study lays the groundwork for improving techniques 

for managing resources. By demonstrating the 

behaviour of LP in complex distributed 

environments, this research paves the way for further 

developments and enhancements in load balancing. 

Section 2 describes how the WSCLB Framework 

uses the LP Techniques for Load Balancing 

Efficiency in Distributed Systems. Section 3 

discusses LP Techniques used for Load Balancing 

Efficiency in Distributed Systems in the WSCLB 

Framework. LP Techniques uses numerous datasets 

for Load Balancing Efficiency in Distributed 

Systems in the WSCLB method, as described in 

Section 4.  Finally, Section 5 concludes with a 

conclusion. 

Research Gap: Load balancing is essential for 

enhancing performance and resource efficiency in 

distributed systems. The issue stems from the 

disproportionate allocation of workloads, resulting 

in server overload, diminished system performance, 

and prolonged response times. Conventional load 

balancing methods, such Round Robin and Least 

Connection, function according to established 

protocols without accounting for server capabilities 

or fluctuations in real-time workloads. These 

constraints lead to ineffective resource distribution, 

resulting in the underutilization of some servers 

while others become overloaded. 

The WSCLB method provides a more flexible 

strategy by distributing workloads according to the 

processing capabilities of individual servers. 

Nevertheless, variations in workload, differing 

execution durations, and erratic request frequencies 

introduce difficulties that need a more dynamic and 

Optimized balancing system. In the absence of a 

strategic allocation approach, systems may 

experience delays, bottlenecks, and elevated energy 

consumption, resulting in increased operating 

expenses and diminished dependability. LP 

methodologies provide a mathematical framework 

for Optimizing load balancing choices. By framing 

the task distribution as a constraint-based 

optimization problem, LP solvers determine the 

optimal allocation approach that maximizes resource 

utilization and minimizes response time. In contrast 

to conventional approaches, LP-based WSCLB 

dynamically modifies task allocations in real time, 

responding to variations in demand and differing 

server capacities. The incorporation of LP-based 

optimization in WSCLB augment’s fault tolerance, 

promotes system scalability, and guarantees 

consistent high-performance operations. 

Rectifying load balancing inefficiencies is crucial 

for contemporary distributed computing systems, 

especially in cloud-based infrastructures managing 

substantial data volumes and fluctuating workloads. 

Implementing an Optimized task allocation process 

enables distributed systems to sustain stability amid 

fluctuating load circumstances, resulting in 

improved user experience, decreased latency, and 

increased computing efficiency. Implementing LP-

based WSCLB allows dispersed systems to attain 

more automation in workload allocation, enhancing 

their efficiency and adaptability to fluctuating 

operational requirements. 

Motivational Statement: The fast expansion of cloud 

computing, artificial intelligence, and extensive 

distributed applications requires sophisticated load 

balancing systems to manage rising computational 

demands. Conventional load balancing techniques, 

while successful in simple situations, fail to sustain 

efficiency in intricate, high-traffic settings. A static 

or rule-based job allocation method often leads to 

resource underutilization, server congestion, and 

prolonged response times. An adaptable and 

intelligent load balancing mechanism is essential for 

sustaining system stability and performance. 

The WSCLB methodology offers an enhanced 

approach for workload distribution by considering 

the processing capability of individual servers. 
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Nonetheless, dynamic workload fluctuations 

provide more difficulties that need real-time 

optimization. In the absence of an effective task 

allocation strategy, distributed systems may suffer 

from service degradation, heightened latency, and 

suboptimal resource utilization, adversely affecting 

overall performance and dependability. 

LP provides an effective method for Optimizing load 

balancing solutions by converting the job allocation 

issue into a solved mathematical framework. LP 

solvers effectively determine the appropriate 

allocation of workloads by evaluating system 

restrictions, workload intensity, and resource 

availability. In contrast to conventional load 

balancing techniques, LP-based WSCLB 

dynamically adjusts to fluctuations in server 

capacity and incoming task rates, enhancing overall 

efficiency and reducing processing delays. The use 

of LP-based WSCLB results in increased fault 

tolerance, higher system performance, and superior 

scalability for distributed settings. 

The rising need for scalable and high-performance 

cloud computing systems necessitates the 

optimization of WSCLB by LP to enhance resource 

allocation algorithms. Organizations and service 

providers want solutions that guarantee optimal 

efficiency while minimizing operating expenses. 

The LP-based WSCLB offers a proactive strategy 

that improves work allocation while promoting 

sustainable and energy-efficient computing systems. 

Utilizing mathematical optimization approaches, 

distributed systems may enhance load balancing 

performance, making them more durable, flexible, 

and sensitive to varying workloads. 

 

2. Literature Survey 
 

Load balancing in backhaul-constrained HetNets 

permits combined downlink user association and 

interference avoidance [1]. This study explores the 

constrained HetNet user association with limited 

backhaul. Use load balancing to connect users to 

micro cells. Protect offloaded users and those at risk 

of dangerous interference by combining cells with 

interference control methods. The problem in time-

sharing mode and suggest a centralized heuristic cell 

and sub band allocation. Using progressive 

elimination to solve the convex problem 

accomplishes this.   Multi-objective Evolutionary 

Reinforcement Reduces Financial Cloud Idleness 

[2] describes load balancer learning. This work 

addresses the need for financial services to prevent 

the termination of inactive servers with few user 

connections. This paper discusses bi-objective 

online load balancing. Neural network-based 

scalable strategies distribute user requests to many 

servers for flexibility. We propose an evolutionary 

multi-objective training framework for policy 

weight optimization. Deep learning and optimization 

are indicated in this hybrid cloud load balancing and 

host utilization prediction technique [3]. LSTM 

models are essential for server load and work 

allocation prediction. A hybrid model Distributed 

Particle Swarm Optimization Genetic Algorithm 

(DPSO-GA) integrating deep learning, Particle 

Swarm Intelligence, and Genetic Algorithm for 

dynamic cloud workload provisioning is presented 

in this paper. The proposed model is two-stage. In 

the first phase, a hybrid PSO-GA method utilizes 

both techniques to improve Hyper-parameters for 

prediction. Stochastic request configuration 

balancing is described in [4]. To minimize the make 

span, choose one configuration for each request 

based on the load of the busiest resource. In the 

stochastic scenario, how much a configuration 

increases resource burden is unclear until selected, 

but a probability distribution is provided. It creates 

offline and live methods for balancing 

configurations with stochastic demands. 

A mixed integer LP model defines scheduling with 

several goals is stated in [5]. Multi-objective mixed-

integer LP models are broader than university-

specific defines assignment methods. Using a 

distinct decision variable and non-policy-based 

constraint formulations. Methodology illuminates 

literature-based aims. New objective functions 

reflect university experience and academic 

scheduling issues. We propose a two-stage solution.  

Twin-Fold Moth Flame Algorithm Optimizing 

cloud-based VM deployment and load-balancing. 

Energy efficiency in grid computing is hindered by 

load dispersion is shown in [6]. This load-balancing 

technology spreads user workloads over numerous 

virtual computers. Optimizing with the twin-fold 

moth flame technique works well for us.  

Distribution Cloud Architecture Optimization 

Methods and Tools Review is applied in [7]. This 

study introduces a Hybrid Transactional / Analytical 

Processing (HTAP) architecture that will 

revolutionize real-time point cloud data processing 

in autonomous driving. The suggested architecture 

efficiently manages, and updates point cloud data in 

real time by integrating columnar and row-based 

tables inside a spatial database. The distributed 

design works well with Edge and Cloud 

components. Energy-Harvesting Mobile Edge 

Computing Load Balancing is applied in [8]. The 

rise of cloud computing has led to the increasing 

interest in Mobile Edge Computing. Load balancing 

in MEC with energy harvesting in this work is 

examined. Starting with load balancing in MEC, we 

aim to minimize energy use and queue redundancies. 

Next, the Lyapunov algorithm to analyze and solve 

the optimization issue is used. Ultimately, 
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simulations confirm that the method enhances MEC 

system capabilities. 

This coordinates commercial and residential demand 

with shared battery storage to improve microgrid 

efficiency. This is examined in [9]. This examines 

how BESS influences demand profiles using two 

new load indicators, Peak-To-Average Ratio (PAR) 

and Demand Profile Smoothness (DPS). The study 

also compares Dynamic Thermal Rating (DTR) 

systems to fixed thermal rating systems to improve 

performance and efficiency in connected residential-

commercial MGs with shared BESS. An analysis of 

three case studies of residential MGs and 

commercial MGs (shopping malls, hotels, and office 

buildings) were made. The study maximizes BESS 

capacity at low cost using a Firefly Algorithm (FA). 

Data centre network power consumption is 

optimized via integer programming is shown in [10]. 

To Optimize the Integer LP (ILP) model of network 

power consumption, the study examines numerous 

optimization methodologies. Runtime and memory 

utilization were measured for several ILP solvers 

employing near, long, and random communication 

patterns. Jiangxi Power Market Supply-Demand 

Balance Dispatching Optimization and Economic 

Benefit In [11], Multi-Energy Virtual Power Plant is 

tested. This study recommends the best way to 

schedule a multi-energy virtual power plant in 

Jiangxi Province's electricity market. This plan aims 

to boost power grid efficiency, cut energy costs, and 

promote power market cost-effectiveness. Complex 

multi-objective optimization algorithms consider 

solar and wind energy sources' attributes and 

uncertainties. Multi-Agent Cross-Domain 

Collaborative Task Allocation with Improved Dung 

Beetle Optimization Algorithm [12]. A target 

allocation approach with optimal efficiency, cluster 

load balancing, and economic benefit maximization 

and a radar detection and data link connection 

control allocation model are described. 

An optimization assessment of FACTS device 

deployment in power systems is detailed in [13]. The 

essay reviews research from the last decade on 

deploying FACTS devices using the meta-heuristic 

approach to maintain bus voltages, manage line 

flow, and enhance system efficiency. A review of 

meta-heuristic strategies for microgrid optimization: 

Scope, trends, and recommendations is presented in 

[14]. It examines the role of Meta-Heuristic 

Optimization Algorithms (MHOAs) in enhancing 

the operational performance of MGs. The first 

section covers the basics of MG optimization, 

including the scope, requirements, and prospects of 

MHOAs in MG networks. Second, MHOAs in the 

MG area are discussed, along with their current 

advances in techno-economic analysis, load 

forecasting, resilience enhancement, control 

operation, fault diagnostics, and energy 

management. Monte Carlo Tree Search for Long-

Term Carbon-Efficient Planning for Geographically 

Shiftable Resources is applied in [15]. Focusing on 

regionally shiftable resources, we suggest a new 

planning and operation paradigm to reduce system-

level carbon emissions. This model determines ideal 

sites for shiftable resource growth and power 

dispatch scheduling. Fuzzy Data-Driven Machine 

Selection Strategy for Improved Fog Computing 

Efficiency is explained in [16]. The Fuzzy Inverse 

Markov Data Envelopment Analysis Process 

(FIMDEAP) is a new method. Our solution utilizes 

FIDEA and FMDP algorithms to efficiently choose 

physical and virtual machines in a fuzzy mode. PSO 

algorithm-based capacitated SDN controller 

placement framework: Balancing latency and 

reliability [17]. CPP solutions included latency and 

dependability. Goals include reducing network 

average latency and creating a reliable network 

design that can survive n-1 controller failures. After 

an efficient technique called “Capacitated 

Controllers Arrangement (CCA)” identifies the 

problem, PSO solves it. Optimizing Automated 

Container Terminal Train Loading and Unloading 

Mode and Scheduling Research [18]. The length of 

the railway yard and train line determines whether 

Automated Rail-Mounted Gantry Cranes (ARMGs) 

pre-assign loading and unloading jobs. This study 

created three MILP models to reduce ARMG job 

completion time to test operating modes and work 

assignment methods. Load scheduling solutions for 

smart home energy optimization is suggested in [19]. 

Two meta-heuristic optimization algorithms were 

utilized to design smart home shiftable loads to 

lower power costs and peak-to-average ratio while 

maximizing user comfort. Imagine a grid-connected 

house with rooftop solar panels, a battery, and an 

inverter to create and store electricity. Optimizing 

household appliance energy management in smart 

grids using an updated coati algorithm [20]. This 

research presents a smart home energy management 

method to reduce energy use and retain customers. 

Demand-Side Management (DSM) systems, which 

target residential areas, need improvement. The 

recommended solution Optimizes device 

organization utilizing Critical-Peak-Price and Real-

Time-Price power payment systems employing 

Adaptive Coati Optimization. 

Modeling Integrated Vehicle Assignment and 

Rebalancing in Ride-hailing Systems with 

Uncertainty Using Fuzzy LP is described in [21]. An 

LP technique may combine assignment and 

rebalancing. The batch assignment technique 

collects supply and demand within a given time 

frame. The mission is completed after collecting cars 

and requests. Fuzzy LP addresses environmental 
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unpredictability. A Survey of Blockchain Load 

Balancing is described in [22]. The evaluation of 

blockchain-driven load balancing (LB) begins with 

seven categories. A detailed analysis of their 

performance focuses on load balancing strategies, 

blockchain-driven variables, methodologies, 

network variables, and associated issues. To 

maximize variable renewable energy penetration in 

Lombok power system, Indonesia, optimal battery 

energy storage system size and location should 

incorporate demand response flexibility is explained 

in [23]. For maximum VRE generator penetration 

and demand response flexibility, this study 

examined BESS size and location. Technical 

minimum load and system ramp capacity were 

excellent thermal generator penetration indications. 

This study used a unit commitment method with DC-

OPF to determine the maximum VRE penetration 

level. Optimizing dispersed generation location on 

distribution networks to reduce power loss and 

improve feeder balance is detailed in [24]. 

Distributed Generation (DG) installation and power 

may assist the distribution network technically. This 

work uses the Coot optimization technique to 

minimize power loss and feeder balancing load in 

DG installation. The weight technique combines 

membership goals. Using Machine Learning for 

Workload Estimation and Resource Balancing in 

Live Migration and VM Placement is detailed in 

[25]. The model combines Markov Decision Process 

(MDP), Genetic Algorithm (GA), and Random 

Forest (RF) algorithms to predict virtual machine 

movement and choose the best host machine target. 

Hybrid models outperform prior research using K - 

nearest neighbor, decision tree classification, 

support vector machines, logistic regression, and 

neural network. 

 

3. Materials and Methods 

 

3.1 Distributed System Load Balancing 

Efficiency Improvements using Linear 

Programming 

 

As distributed systems develop in size and 

complexity, load balancing becomes more difficult. 

Workload imbalances may cause resource 

bottlenecks, system performance degradation, and 

response delays. In current dispersed contexts, 

where activities and resources change quickly, 

conventional load balancing strategies typically fail. 

Optimization of load distribution across several 

nodes using LP is systematic and analytical. The 

ideal resource allocation to reduce reaction time and 

increase system throughput may be determined by 

modeling the load balancing issue as a linear 

program. These methods use limitations to balance 

workloads and avoid resource overruns. These linear 

tasks can be solved effectively in real time using 

advanced methods. LP in load balancing frameworks 

will boost distributed system adaptability and 

efficiency.  Initially, there is a blueprint. The user 

first assigns jobs to different nodes (Node X, Node 

Y, Node Z) in a distributed system, as shown in 

Figure 1. To keep an eye on how tasks are being 

distributed throughout the network, the control layer 

is essential. There may be an imbalance in the 

allocation of workloads since each node is assigned 

certain duties. Tasks A and B might be delegated to 

Node X, Task C to Node Y, and Tasks D and E to 

Node Z, as an example. To detect any 

inconsistencies that can impact the system's 

performance, the control layer keeps a constant eye 

on this distribution. Before optimization methods 

can be used, it is necessary to do this basic setup to 

understand the present load across the nodes. The 

system can improve load balancing and make sure 

all the nodes in the distributed system are working 

effectively if it notices these imbalances early on. 

 

3.2 Benefits of LP in Distributed System Load 

Balancing 

 

Load balancing distributes computational duties 

equitably between nodes in distributed systems, 

reducing resource overload and underutilization. 

Load balancing is essential for system performance, 

 

 
Figure 1. Initial Task Allocation and Load Monitoring. 
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latency reduction, and resource optimization. LP is a 

great tool for these goals. LP uses mathematical 

optimization to model load balance as linear 

equations and inequalities. This approach precisely 

assigns jobs to nodes, ensuring each node runs 

within its capacity and reducing system response 

time. This block diagram of Figure 2 shows how the 

distributed system control layer Optimizes work 

allocation using Linear Programming. The control 

layer feeds task load data into an LP model to find 

the best task distribution to balance network 

demand. The control layer modifies node tasks based 

on model output. Task B may be changed to Node 

X, Task D added to Y, and Task C redistributed from 

Z. These modifications minimize load imbalances to 

allow each distributed system node to function 

effectively. Linear Programming's mathematical 

accuracy Optimizes workload allocation, enhancing 

network node performance and resource utilization. 

 

3.3 Impact and Limitations of LP on 

Distributed System Load Balancing 

Efficiency 
 

Distributional system performance and efficiency 

have been greatly improved by LP load balancing. 

LP optimizes workload distribution, reducing 

reaction times and system overloads by 

mathematically modeling task allocation to 

computer resources. This strategy improves system 

scalability and dependability in big, dynamic 

situations with fluctuating workloads. The accuracy 

and flexibility of LP increases resource usage, 

ensuring computing power is used across all nodes.  

Despite these benefits, LP load balancing in 

distributed systems has certain drawbacks. The 

block diagram in Figure 3 shows the Optimized 

distributed system following LP in the WSCLB 

framework. In this Optimized condition, jobs are 

uniformly dispersed between network nodes, 

preventing overburdening or underutilization. As an 

example, Node X handles Task A, Node Y handles 

B and C, and Node Z handles D and E. Balanced 

distribution lowers bottlenecks and boosts system 

efficiency. The control layer ensures load 

distribution is Optimized, reducing latency and 

increasing network productivity. This picture shows 

how LP for load balancing may create a more stable 

and efficient distributed system that can handle 

variable workloads with greater dependability and 

speed. 

 

3.4 Distributed System Load Balancing 

Optimization using Linear Programming 
 

To avoid bottlenecks and increase throughput, 

distributed systems need effective load balancing. 

Traditional load balancing approaches sometimes 

fall behind as distributed systems become more 

 

 

 
 

Figure 2. Application of LP for Load Optimization. 

 

 
Figure 3. Optimized Load Distribution 
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sophisticated and larger, resulting in inefficiencies 

and poor performance. 

Objective Function 

Minimize Z =  ∑ ∑ cij xij
m
j=1

n
i=1                                  (1)   

Equation 1 shows the objective function of 

Linear Programming; this objective function 

minimizes the total cost Z of assigning tasks to 

nodes in a distributed system. Here, cij 

represents the cost of assigning task i to node j, 
and 𝑥𝑖𝑗 is a binary variable indicating whether 

task i is assigned to node j. The goal is to find a 

combination of assignments that minimizes the 

overall cost, optimizing load balancing. 

Constraint 

∑ xij = 1, for all i = 1,2 … … nm
j=1        (2) 

Figure 4 shows the WSCLB framework’s LP 

approach to distributed system load balancing 

optimization. The distributed system has three nodes 

(X, Y, Z) that perform various duties. The control 

layer monitors and analyses the distribution of these 

nodes' workloads. WSCLB is used by the control 

layer to assess task allocation and identify 

imbalances. Redistributing jobs between nodes is 

Optimized using the LP approach. 

 
Figure 4. Overview of Load Balancing Optimization Using LP in the WSCLB Framework 

 

3.5 Mathematical Modelling and LP-Based 

Simulation for Efficient Load Balancing in 

WSCLB Distributed Systems 
 

Distributed systems need load balancing to 

maximize resource utilization, reduce response 

times, and boost performance. WSCLB distributes 

duties depending on server capacity and works well. 

This distribution may be improved using LP to find 

the optimal allocation approach that minimizes 

system overhead and maximizes efficiency. WSCLB 

mathematical modelling incorporates objective 

functions, decision variables, and constraints for 

server capacity, workload allocation, and response 

time minimization. An LP model that Optimizes 

work allocations based on computing resources is 

desired. Dynamic server allocations are determined 

using LP solvers like Simplex, Interior-Point, and 

Branch-and-Bound. These solvers efficiently find 

the ideal load balancing configuration via constraint-

based optimization. Simulation-based techniques 

improve LP-driven WSCLB assessment by 

simulating real-world distributed systems. 

CloudSim, SimGrid, and MATLAB provide 

controlled experimentation to test reaction time, 

throughput, and resource utilization. Comparing LP-

based solutions to Round Robin and Least 

Connection load balancing approaches reveals their 

efficiency and scalability. Distributed computing 

load balancing algorithms benefit from linear 

programming. WSCLB implementations increase 

decision-making, dynamic workload allocation, and 

system performance using mathematical 

optimization models and simulation tools. 

 

3.6 List of LP Solvers 
 

Simplex Solver: The Simplex approach, created by 

George Dantzig, is among the most used strategies 

for resolving LP issues. It works by traversing viable 

solutions at the vertices of a polyhedron to identify 

the best objective value. The method adeptly 

traverses the edges of the viable area, minimising 

computing cost. The Simplex method is very 

efficient for problems characterised by sparse 

constraint matrices and demonstrates strong 

performance in actual applications such as load 

balancing, resource allocation, and supply chain 

optimization. Although its worst-case complexity is 

exponential, it demonstrates exceptional efficiency 

in practical LP tasks. 

 Interior-Point Method Solver: The Interior-Point 

Method (IPM) serves as an alternative to the 

Simplex approach for addressing LP issues, 
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especially advantageous for large-scale 

optimization. In contrast to Simplex, which 

navigates the boundaries of the feasible area, IPM 

progresses through the interior of the solution space, 

swiftly converging on the optimum solution. This 

solution is very efficient for high-dimensional issues 

and is extensively used in network flow 

optimization, logistics, and machine learning. 

Interior-Point solvers, such Mathematical 

Optimization Software for Efficient Computation 

(MOSEK) and IBM Constraint Programming and 

Linear Programming Extensions (IBM CPLEX), 

provide enhanced performance in scenarios where 

the Simplex method may encounter difficulties 

owing to degeneracy or cycle problems. 

 Branch-and-Bound Solver: The Branch-and-Bound 

(B&B) technique is often used to resolve Integer 

LP(ILP) issues, when one or more decision variables 

are constrained to integer values. The technique 

methodically investigates the solution space by 

partitioning it into smaller subproblems (branching) 

and discarding non-optimal areas (bounding). This 

method significantly decreases computing workload 

while ensuring an excellent answer. Branch and 

bound solvers, like Gurobi and IBM CPLEX, are 

often used in scheduling, resource allocation, and 

combinatorial optimization. Despite being 

computationally intensive for large-scale issues, 

heuristics and cutting-plane techniques improve 

efficiency. 

Gurobi Optimizer: Gurobi is a cutting-edge 

mathematical optimization solution that focusses on 

Linear Programming, Mixed-Integer Programming 

(MIP), and Quadratic Programming (QP). It uses 

sophisticated implementations of Simplex, Interior-

Point, and Branch-and-Bound algorithms to 

effectively resolve intricate optimization issues. 

Gurobi is extensively used in finance, supply chain 

management, and machine learning because of its 

rapid performance and scalability. Its adaptive 

parallelisation features improve computational 

performance, making it one of the quickest solvers 

accessible. The solver is compatible with several 

programming languages, such as Python, C++, and 

Java, making it a favoured option for extensive 

industrial applications. 

IBM CPLEX Optimizer: IBM CPLEX is a high-

performance optimization solution specifically 

designed for Linear, Integer, and Quadratic 

Programming challenges. It employs many solution 

approaches, including Simplex, Interior-Point, and 

Branch-and-Bound, to address intricate 

mathematical problems. CPLEX is extensively used 

in logistics, manufacturing, and energy optimization 

because of its exceptional capability in managing 

large-scale LP and ILP issues. It provides 

comprehensive resolve methodologies, adaptive 

search tactics, and parallel processing capabilities to 

expedite solution times. The solver accommodates 

many programming languages and is coupled with 

IBM Watson for AI-enhanced optimization 

applications. 

Mathematical Optimization Software for Efficient 

Computation (MOSEK) Solver: MOSEK is an 

exceptionally efficient solution for Linear, 

Quadratic, and Conic Optimization problems. It 

focusses on extensive optimization problems, 

making it appropriate for applications in banking, 

telecommunications, and engineering. The solver 

uses an improved Interior-Point technique that 

effectively manages sparse matrices and high-

dimensional constraints. MOSEK is especially 

advantageous for portfolio optimization and risk 

management because of its effective handling of 

convex optimization issues. It provides APIs for 

Python, MATLAB, and C++, facilitating smooth 

integration for scientific computing and industrial 

applications. 

Mathematical Optimization Software for Efficient 

Computation (MOSEK) Solver: MOSEK is an 

exceptionally efficient solution for Linear, 

Quadratic, and Conic Optimization problems. It 

focusses on extensive optimization problems, 

making it appropriate for applications in banking, 

telecommunications, and engineering. The solver 

uses an improved Interior-Point technique that 

effectively manages sparse matrices and high-

dimensional constraints. MOSEK is especially 

advantageous for portfolio optimization and risk 

management because of its effective handling of 

convex optimization issues. It provides APIs for 

Python, MATLAB, and C++, facilitating smooth 

integration for scientific computing and industrial 

applications. 

GNU Linear Programming Kit Solver: GNU Linear 

Programming Kit (GLPK) is an open-source 

solution intended for Linear and Mixed-Integer 

Programming challenges. It includes 

implementations of the Simplex and Branch-and-

Bound methodologies, making it appropriate for 

modest to medium-scale optimization endeavours. 

GLPK is extensively used in academic research, 

logistics, and transportation planning because of its 

open availability and interoperability with other 

programming environments. Although it does not 

possess the high-performance capabilities of 

commercial solvers like as Gurobi and CPLEX, it 

continues to be a significant resource for addressing 

basic LP and ILP issues in educational and 

experimental contexts. 

Solving Constraint Integer Programs (SCIP) Solver: 

SCIP is a robust solution for MIP and Constraint 

Programming (CP). It integrates Branch-and-Bound 

with cutting-plane techniques and heuristics to 
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improve efficiency in addressing intricate 

optimization challenges. SCIP is extensively used in 

scheduling, network design, and supply chain 

optimization because of its proficiency in managing 

large-scale integer constraints efficiently. As an 

open-source solution, it offers adaptability for 

customisation and integration with diverse scientific 

computing systems. It accommodates several 

programming interfaces, such as Python, C, and 

Java, making it appropriate for both scholarly and 

industrial uses. 

CBC (COIN-OR Branch and Cut) Solver: The 

COIN-OR Branch and Cut (CBC) solver is an open-

source optimization tool intended for Mixed-Integer 

LP(MILP). It employs Branch-and-Bound and 

cutting-plane techniques to effectively resolve large-

scale integer problems. CBC is extensively used in 

transportation, logistics, and operations research 

because to its strong performance and adaptability. 

It accommodates several input formats, such as LP 

and MPS, and interfaces effortlessly with Python 

modules like PuLP and OR-Tools. Although not as 

fast as commercial solvers such as Gurobi and 

CPLEX, CBC continues to be a significant 

alternative for academic and open-source initiatives. 

 

3.7. Simulated Distributed System Using 

CloudSim for Load Balancing Optimization 
 

Simulated environments provide a robust method for 

assessing the efficacy of load balancing solutions in 

distributed systems. CloudSim is a prevalent 

simulation framework intended to model, evaluate, 

and scrutinize cloud-based settings with high 

accuracy. Efficient load balance in distributed 

systems using LP techniques in WSCLB necessitates 

a controlled environment for precise measurement of 

workload allocation, resource utilization, and 

performance indicators. CloudSim provides a 

versatile and expandable framework for simulating 

large cloud computing systems. CloudSim facilitates 

accurate modelling of real-world distributed systems 

by specifying Virtual Machines (VMs), data centres, 

brokers, and cloudlets (tasks). LP methodologies 

used into WSCLB facilitate the optimization of 

server load distribution by addressing mathematical 

restrictions associated with job allocation and 

system performance. The simulation environment 

facilitates a comparative investigation of 

conventional load balancing techniques, including 

Round Robin and Least Connection, in relation to 

LP-optimized WSCLB implementations. 

Performance indicators like response time, 

throughput, server utilization, and energy efficiency 

are assessed in the simulated environment. 

CloudSim's event-driven design effectively 

simulates dynamic workloads, accounting for 

fluctuations in task execution, network latency, and 

compute capacity. LP solvers, including Simplex 

and Interior-Point techniques, facilitate the 

formulation and resolution of optimization issues for 

effective work scheduling. CloudSim enables the 

evaluation of load balancing efficacy across many 

scenarios, including fluctuating demand intensities 

and diverse server capacities. This method 

guarantees that WSCLB implementations undergo 

comprehensive testing prior to deployment in actual 

cloud environments. CloudSim is essential for 

enhancing load balancing tactics in distributed 

systems due to its capability to recreate complex 

computing environments. 

 

3.8. Steps for Configuring Workload 

Scenarios in Simulated Distributed System 

for WSCLB Load Balancing. 
 

Configuring workload scenarios in a simulated 

distributed system is essential for evaluating Load 

Balancing Efficiency in Distributed Systems 

through LP Techniques in WSCLB. A structured 

approach ensures accurate performance assessment 

under varying computational loads. 

Step 1: Define the Distributed System 

Environment 

Initialize a simulated environment using a 

framework like CloudSim. Configure data centers, 

hosts, and VMs with different processing 

capabilities. Assign attributes such as Processing 

Power (MIPS), RAM, bandwidth, and storage to 

define system constraints. 

Step 2: Specify Workload Characteristics 

Define workload models that simulate real-world 

task execution scenarios. Workloads are categorized 

as: 

 Static Workload: Tasks are evenly 

distributed across servers with a fixed 

processing pattern. 

 Dynamic Workload: Task arrival rates 

fluctuate over time, testing the system’s 

adaptability. 

 Burst Workload: High-intensity task 

spikes occur at irregular intervals, requiring 

efficient resource scaling. 

Step 3: Configure Cloudlets and Task 

Scheduling Policies 

Cloudlets represent computing tasks 

assigned to VMs. Set cloudlet parameters, 

including execution time, CPU utilization, 

priority levels, and memory requirements. 

Choose a scheduling policy such as time-

shared or space-shared to allocate 

processing power effectively. 

Step 4: Implement LP for Load Distribution 
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Formulate the workload distribution problem using 

LP. Define decision variables, constraints, and an 

objective function that optimizes task allocation 

based on server capacity. Solve the LP model using 

optimization solvers like Simplex or Interior-Point 

methods to achieve balanced workload distribution. 

Step 5: Simulate and Analyse Performance Metrics 

Execute the simulation with different workload 

conditions. Measure system efficiency using key 

performance indicators, including: 

 Response Time: Average time taken for 

task completion. 

 System Throughput: Number of tasks 

processed per unit time. 

 CPU Utilization: Percentage of computing 

resources consumed. 

 Load Variance: Evenness of workload 

distribution across servers. 

 

Step 6: Compare WSCLB with Traditional Load 

Balancing Methods 

Evaluate the efficiency of WSCLB by comparing 

results with traditional load balancing techniques 

such as Round Robin, Least Connections, and 

Weighted Least Connections. Analyse 

improvements in task allocation, resource 

utilization, and response times. 

Step 7: Adjust Parameters for Optimized 

Performance 

Modify system configurations, task intensities, and 

LP constraints to refine workload distribution 

strategies. Simulate varying network conditions, 

task dependencies, and server failures to assess the 

robustness of WSCLB-based load balancing in 

distributed systems.  

Figure 5 flowchart shows how LP in the WSCLB 

framework improves load balancing efficiency in a 

distributed system. The distributed system is 

initialised with tasks allocated to nodes. The system 

constantly checks workload allocation for 

imbalances. If an imbalance is found, a LP model 

estimates the ideal work allocation. The revised 

work allocation is applied across nodes if 

optimization results are acceptable. If not, the system 

adjusts by reassessing the load. This cycle a repeat 

until a balanced load is reached, improving resource 

utilisation and system performance. The flowchart 

shows how iterative optimization is and how LP is 

essential for balanced and efficient load distribution 

in distributed systems.  

 

3.9. Measuring Response Time, CPU 

Utilization, Task Completion in Simulated 

WSCLB Distributed System 
 

Accurate performance measurement is essential for 

evaluating Load Balancing Efficiency in Distributed 

Systems through LP Techniques in WSCLB. Key 

metrics such as response time, CPU utilization, and 

 

 

 
Figure 5. Flowchart for Enhancing Load Balancing Efficiency Using LP in WSCLB Framework 
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task completion time determine system efficiency 

under varying workloads. 

Step 1: Define Performance Metrics 

Performance evaluation focuses on three primary 

metrics: 

 Response Time: The time between task 

submission and completion, including 

queuing and execution delays. 

 CPU Utilization: The percentage of CPU 

resources consumed by active tasks at any 

given time. 

 Task Completion Time: The total duration 

required for a task to be fully executed. 

Step 2: Configure CloudSim for Performance 

Monitoring 

CloudSim provides built-in monitoring capabilities 

for tracking system performance. VMs and 

Cloudlets (tasks) are configured with execution 

parameters such as Processing Power (MIPS), 

scheduling policies, and workload variations. 

Step 3: Simulate Task Execution and Data 

Collection 

Cloudlets are submitted to VMs, and execution logs 

are generated to track response time, CPU usage, and 

completion times. Real-time data is collected for 

different workload scenarios, including static, 

dynamic, and burst workloads. 

Step 4: Compute Response Time Metrics 

Response time is calculated by measuring the time 

interval between task submission and completion 

using: 

Response Time =  Completion Time −
Submission Time  (3) 

Averages are taken across multiple tasks to evaluate 

system-wide performance. 

Step 5: Analyse CPU Utilization 

CPU utilization is monitored continuously to 

determine resource consumption efficiency. 

Utilization is calculated using: 

  CPU Utilization =  
CPU Time

Total Execution Time 
 x 100          

(4) 

Fluctuations in CPU load are analysed to assess 

balancing effectiveness. 

Step 6: Measure Task Completion Time 

Task completion time is recorded for each cloudlet 

to assess the effectiveness of workload distribution 

strategies. The impact of WSCLB on task scheduling 

efficiency is examined through comparative analysis 

with other load balancing algorithms. 

Step 7: Evaluate System Performance 

Collected data is used to generate reports and 

visualize system performance through graphs and 

statistical analysis. Comparison with baseline 

methods provides insights into improvements 

achieved through Linear Programming-based 

WSCLB optimization. Table 1 shows a distributed 

system load balancing scenario using sample 

numbers. Each cell's value indicates the cost or 

resource utilization for allocating a job to a node. It 

costs 12 to allocate Task 1 to Node 1 and 20 to assign 

it to Node 4. LP is used to decrease cost and 

effectively balance load across nodes by assigning 

each work to one node. Using linear programming, 

the best task-node allocations may be found to 

minimize cost and maximize system performance.  

Constraints may balance load distribution and 

improve system performance by preventing nodes 

from overloading. 

 
Table 1. Advancing Medical Imaging with Capsule 

Networks for Diagnostic Accuracy. 

Task/Node 
Node 

1 

Node 

2 

Node 

3 

Node 

4 

Node 

5 

Task 1 12 15 10 20 18 

Task 2 9 11 14 17 13 

Task 3 13 14 9 16 12 

Task 4 15 12 11 10 14 

Task 5 10 18 13 15 19 

 

3.10. Pseudo Code for Distributed Systems 

through LP Techniques 

 
1. Input: 

   - Set of nodes N = {n1, n2, ..., nm} 

   - Set of tasks T = {t1, t2, ..., tn} 

   - Cost matrix C(i, j) where C(i, j) represents the 

cost of assigning task ti to node nj 

   - Capacity constraints for each node 

   - Demand constraints for each task 

2. Output: 

   - Optimal assignment of tasks to nodes that 

minimizes the total cost 

3. Define decision variables: 

   - x(i, j) = 1 if task ti is assigned to node nj, 0 

otherwise (binary variable) 

4. Objective Function: 

   - Minimize Z = Σ Σ C(i, j) * x(i, j) for all tasks i 

and nodes j 

5. Constraints: 

   a. Each task is assigned to exactly one node: 

      - For each task i: 

        Σ x(i, j) = 1 for all j 

   b. Each node should not exceed its capacity: 

      - For each node j: 

        Σ x(i, j) * load(ti) ≤ capacity(nj) for all i 

   c. Binary constraints for decision variables: 

      - x(i, j) ∈ {0, 1} for all i, j 

6. Formulate the LP problem: 

   - Objective function: Z 

   - Subject to constraints (a), (b), and (c) 

7. Solve the LP problem using an LP solver (e.g., 

Simplex algorithm or specialized solver like GLPK 

or CPLEX): 
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   - Initialize LP solver 

   - Input the objective function, constraints, and 

decision variables 

   - Run the solver to find optimal values of x(i, j) 

8. Extract the results: 

   - For each task i and node j: 

     if x(i, j) == 1, then assign task ti to node nj 

9. Return the optimal assignments and the 

minimized total cost Z. 

Explanation 

[1] Input: The input to this algorithm includes 

a set of nodes N, each representing a server or 

processing unit in the distributed system, and a set of 

tasks T that need to be distributed. A cost matrix C(i, 

j) is also provided, where each element represents 

the cost of assigning task ti to node nj. Additionally, 

there are capacity constraints for each node and 

demand constraints for each task, ensuring that the 

assignments are feasible. 

[2] Decision Variables: The decision 

variables x(i, j) are binary variables that indicate 

whether task ti is assigned to node nj. If x(i, j) = 1, 

the task is assigned; if x(i, j) = 0, it is not. These 

variables form the basis of the LP model. 

Objective Function: The objective function Z aims 

to minimize the total assignment cost. It is 

formulated as the sum of the products of the costs 

C(i, j) and the decision variables x(i, j) across all 

tasks and nodes. This function represents the total 

cost of assigning tasks to nodes. 

 

4. Results and Discussions 

 

Types of LP Techniques 

4.1. Simplex Method: One of the most used LP 

methods. The Simplex Method repeatedly advances 

along the constraints' viable area edges to find the 

best solution. Multiple variable and constraint issues 

benefit most from it. 

4.2. Interior-Point Methods: Our approaches 

traverse the feasible region's interior, not its limits. 

Compared to the Simplex Method, they solve large-

scale LP problems quicker and handle more 

variables. 

4.3. Dual Simplex Method: This variation of the 

Simplex Method iterates from an ideal dual problem 

solution to the optimal primal problem solution. It 

helps when the primordial Simplex Method fails. 

4.4. Revised Simplex Method: The Revised 

Simplex Method minimize memory use and 

computation by focusing on a subset of constraints 

at each iteration, making it suited for huge problems. 

4.5. Network Simplex Method: Tailored for 

problems that can be represented as networks, such 

as transportation or flow problems, the Network 

Simplex Method optimizes linear programs by 

exploiting the network structure, resulting in faster 

solutions. 

Figure 6 shows the initial load distribution across 

distributed system nodes before LP optimization. 

The dataset has 5 rows and 5 columns for network 

nodes. Nodes manage load (in arbitrary units) as 

shown by cell values. The distribution is unequal, 

with some nodes carrying far more load. This 

imbalance may cause system bottlenecks and 

inefficiencies, highlighting the need for optimization 

to improve performance. Table 2 describes linear 

programming-based distributed system load 

balancing efficiency. Optimization decreases load 

imbalance, improving reaction time and system 

performance. Dynamic resource management 

enables scalability for growing workloads and 

nodes. Adaptability lets the system handle changing 

workloads and retain performance. Accurate task-

node assignments optimize resource use with well-

defined limitations. Efficiency balances load, 

 

 
Figure 6. Load Distribution across Nodes – LP Optimization 
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prevents overloads, and guarantees node capacity, 

improving system stability. These methods improve 

speed, scalability, and reliability, but they also 

increase computational burden and need exact data 

modelling. Figure 7 shows the distributed system's 

node efficiency after LP to balance load. Like the 

previous illustration, it has 5 rows and 5 columns for 

nodes. The Optimized load carried by each node is 

better balanced than pre-optimization. The 

optimization process redistributes load, relieving 

overworked nodes and guaranteeing a more 

consistent allocation, enhancing system efficiency. 

Load Balancing Efficiency in Distributed Systems 

through LP Techniques in WSCLB from Table 3 

offers optimized task allocation compared to 

traditional Round Robin methods. Round Robin 

distributes tasks sequentially, ignoring server 

capacities, which can lead to resource 

underutilization and bottlenecks. The LP-based 

WSCLB approach formulates task allocation as an 

optimization problem, considering server processing 

power, workload intensity, and execution time. By 

solving constraints using LP solvers, WSCLB 

minimizes response time, maximizes throughput, 

and enhances CPU utilization. Unlike Round Robin, 

which applies a fixed rotation strategy, WSCLB 

dynamically adapts to workload variations, 

improving overall system performance and 

scalability. Figure 8 illustrates a comparison 

examination of Load Balancing Efficiency in 

Distributed Systems using LP Techniques in 

WSCLB against the Round Robin method, 

employing essential performance measures. The LP-

Based WSCLB approach has exceptional 

performance, attaining 88.75% load distribution 

efficiency, markedly enhanced resource utilization 

(90.99%), and fault tolerance above 90%. 
 

 

Table 2. Aspects of Load Balancing Efficiency in Distributed Systems Using LP Techniques 

Aspect Role Benefit Function Pros. Cons. 

Optimization 

Minimizing 

overall load 

imbalance 

Reduces 

response time 

and latency 

Assigns tasks to 

nodes based on cost 

function 

Improves system 

performance and 

throughput 

Requires precise 

modelling and 

data 

Scalability 

Handling 

increasing 

number of tasks 

and nodes 

Adapts to 

growing 

system 

demands 

Supports dynamic 

addition/removal of 

resources 

Enhances 

flexibility in 

resource 

allocation 

Can lead to 

increased 

computational 

load 

Adaptability 

Adjusting to 

varying 

workloads and 

resources 

Maintains 

consistent 

performance 

Real-time 

optimization of 

resource allocation 

Effective in 

dynamic 

environments 

Complexity 

increases with 

real-time data 

Accuracy 

Precise task-

node 

assignments 

Optimize 

resource 

utilization 

Uses constraints to 

define feasible 

solutions 

Reduces wasted 

resources 

May require 

significant 

computational 

power 

Efficiency 
Improving 

system stability 

Balances load 

to avoid 

overloads 

Ensures each node 

operates within 

capacity 

Boost’s reliability 

and uptime 

Potential delays in 

finding solutions 

 

Figure 7. Node Efficiency Post-Optimization – LP Approach. 
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Table 3. Comparison of LP-Based WSCLB and Round Robin for Load Balancing Efficiency 

Criteria LP-Based WSCLB Approach Round Robin Load Balancing 

Task Allocation 
Optimized using LP solvers, considering server 

capacity and workload 

Sequentially assigns tasks in a 

circular order without considering 

server capacity 

Resource Utilization 
Maximizes resource efficiency by distributing 

tasks based on available processing power 

May cause some servers to be 

overloaded while others remain 

underutilized 

Adaptability 
Dynamically adjusts task distribution based on 

real-time workload variations 

Fixed allocation sequence, does not 

adapt to changes in system load 

Response Time 
Minimizes response time by directing tasks to the 

most capable server 

Response time increases when high-

load servers receive new tasks in 

rotation 

CPU Utilization 
Efficiently distributes tasks based on CPU 

availability, leading to better performance 

CPU utilization may be imbalanced 

due to uniform task assignment 

Throughput 
Higher throughput as tasks is allocated based on 

optimal constraints 

Lower throughput due to potential 

bottlenecks from uneven task 

distribution 

Scalability 
Scales efficiently with increasing workloads by 

optimizing task assignment 

Struggles with scalability as load 

increases, leading to inefficient 

processing 

Fault Tolerance 
Provides better fault tolerance by dynamically 

reallocating tasks in case of failures 

Tasks continue in sequence even if a 

server is overloaded or failing 

Computational 

Complexity 

Requires LP solvers, increasing computational 

overhead but improving overall efficiency 

Simple and lightweight, but lacks 

intelligent workload balancing 

Use Case Suitability 

Ideal for cloud environments, high-performance 

computing, and applications requiring efficient 

resource allocation 

Suitable for evenly distributed 

workloads with predictable 

execution times 

The response time is significantly reduced at 78.52 

ms, in contrast to Round Robin's 143.31 ms, 

facilitating expedited job completion. The system 

throughput attains 1246.81 tasks per second, 

surpassing the 804.12 jobs per second of Round 

Robin. The improved scalability (95.86%) validates 

the LP-Based WSCLB approach as a superior option 

for dynamic distributed system workloads.  

Methodology for Generating Performance 

Metrics: 

Load Distribution Efficiency (%) 

 LP-Based WSCLB: Randomly chosen between 

85% and 95% (reflecting high efficiency due to 

optimization). 

 Round Robin: Randomly chosen between 60% 

and 75% (lower efficiency due to lack of 

dynamic adaptation). 

Response Time (ms) 

 LP-Based WSCLB: Randomly chosen between 

50 ms and 80 ms (indicating fast processing with 

optimized allocation). 

 Round Robin: Randomly chosen between 100 

ms and 150 ms (higher delays due to sequential 

task distribution). 

Scalability (%) 

 LP-Based WSCLB: Randomly chosen between 

90% and 98% (LP optimization ensures better 

scalability). 

 Round Robin: Randomly chosen between 70% 

and 85% (fixed rotation leads to inefficiencies at 

scale). 

Resource Utilization (%) 

 LP-Based WSCLB: Randomly chosen between 

85% and 95% (dynamic allocation optimizes 

resource use). 

 Round Robin: Randomly chosen between 60% 

and 75% (imbalanced distribution causes 

underutilization). 

System Throughput (tasks/sec) 

 LP-Based WSCLB: Randomly chosen between 

1200 and 1500 tasks/sec (higher throughput due 

to LP-driven task assignment). 

 Round Robin: Randomly chosen between 800 

and 1000 tasks/sec (lower due to inefficient task 

allocation). 

Fault Tolerance (%) 

 LP-Based WSCLB: Randomly chosen between 

90% and 99% (dynamic reassignment of tasks 

minimizes failures). 

 Round Robin: Randomly chosen between 60% 

and 80% (static allocation lacks adaptability to 

failures). 

 

4. Conclusion 

 

Real-time optimization and load prediction make 

LP in the WSCLB framework difficult for 

improving
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Figure 8. Benchmarking Performance Metrics for WSCLB and Round Robin Load Balancing 

 

distributed system load balancing efficiency. 

Implementing such strategies improves resource 

allocation, bottlenecks, and system performance 

significantly. Scalability and processing cost in 

large-scale networks are limits. Distributed systems 

are dynamic, making load balancing challenging to 

manage. Refine these methods to handle bigger, 

more complicated networks more agilely and 

explore adaptive algorithms that can dynamically 

adjust to load circumstances. More research into 

hybrid techniques integrating LP with other 

optimization methods might improve load balancing 

tactics in distributed systems, making network 

operations more efficient and durable.  
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