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Abstract:  
 

In modern engineering systems, real-time computational models are essential for 

optimizing performance, enhancing decision-making, and reducing latency in complex 

environments. This research presents a Hybrid Swarm Intelligence-Based Neural 

Framework (HSIN-F) to improve the efficiency, accuracy, and adaptability of real-time 

engineering computations. The proposed framework integrates Particle Swarm 

Optimization (PSO), Grey Wolf Optimizer (GWO), and Ant Colony Optimization 

(ACO) with a Deep Neural Network (DNN) to achieve a balance between exploration 

and exploitation, enabling optimal model parameter selection and reducing 

computational overhead. To validate the efficiency of HSIN-F, experiments were 

conducted across various real-time engineering applications, including industrial 

automation, smart grids, and IoT-based systems. The proposed model outperformed 

conventional optimization techniques in terms of processing speed, predictive accuracy, 

and system adaptability. Key performance metrics include: Prediction Accuracy: 98.2% 

(compared to 93.5% in traditional models), Computational Latency Reduction: 34.7%, 

Energy Efficiency Improvement: 27.5%, Error Rate Reduction: 32.1%. Future research 

will explore hybrid metaheuristic strategies and federated learning-based 

decentralization to further enhance system performance and robustness. 

 

1. Introduction 
 

Engineering systems increasingly rely on real-time 

computational models to optimize performance, 

enhance decision-making, and reduce operational 

costs. The complexity of these systems demands 

intelligent frameworks that can process vast 

amounts of data with minimal latency. Traditional 

optimization techniques often suffer from 

convergence issues, high computational overhead, 

and limited adaptability to dynamic environments 

[1]. To address these challenges, artificial 

intelligence (AI)-driven optimization models have 

emerged as a viable solution, particularly in fields 
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such as industrial automation, smart grids, and IoT-

based systems [2]. Among these approaches, 

Swarm Intelligence (SI)-based algorithms have 

gained significant traction due to their ability to 

efficiently explore solution spaces and adapt to 

changing conditions in real time [3]. 

Swarm Intelligence methods, such as Particle 

Swarm Optimization (PSO), Grey Wolf Optimizer 

(GWO), and Ant Colony Optimization (ACO), 

have demonstrated promising results in engineering 

applications by improving accuracy and reducing 

computational complexity [4]. However, individual 

swarm-based algorithms have inherent limitations, 

such as premature convergence (PSO), slow 

adaptability (ACO), and over-exploitation of 

solutions (GWO) [5]. To overcome these 

limitations, hybrid swarm intelligence techniques 

have been developed, combining the strengths of 

multiple optimization methods to enhance 

convergence speed and robustness [6]. By 

integrating swarm-based optimization with Deep 

Neural Networks (DNNs), a more adaptable and 

efficient real-time computational framework can be 

realized, capable of handling complex engineering 

problems with greater precision. 

The Hybrid Swarm Intelligence-Based Neural 

Framework (HSIN-F) proposed in this study 

integrates PSO, GWO, and ACO with DNNs to 

optimize real-time computational models for 

engineering systems. This hybrid approach allows 

for dynamic parameter tuning, efficient search 

space exploration, and improved model 

adaptability, thereby minimizing errors and 

enhancing predictive accuracy [7]. Real-time 

engineering applications, such as fault detection in 

smart grids, predictive maintenance in industrial 

automation, and anomaly detection in IoT-based 

systems, can benefit from this approach by 

improving response times and reducing 

computational overhead [8]. Experimental 

validation of the proposed HSIN-F framework was 

conducted using various real-world datasets from 

industrial control systems, power grids, and smart 

city applications. Comparative results indicate that 

the proposed model achieved a prediction accuracy 

of 98.2%, a 34.7% reduction in computational 

latency, and a 27.5% improvement in energy 

efficiency, significantly outperforming 

conventional optimization techniques [9]. 

Additionally, the error rate was reduced by 32.1%, 

demonstrating the effectiveness of hybrid swarm 

intelligence in real-time engineering applications. 

The primary contributions of this study are as 

follows: 

1. Development of a Hybrid Swarm Intelligence-

Based Neural Framework integrating PSO, 

GWO, and ACO with DNNs for real-time 

computational optimization. 

2. Enhancement of computational efficiency, 

accuracy, and adaptability in real-time 

engineering models through dynamic parameter 

tuning and optimization strategies. 

3. Extensive validation using real-world 

engineering datasets, demonstrating superior 

performance over existing approaches in terms 

of predictive accuracy, computational latency, 

and energy efficiency. 

4. Analysis of the impact of hybrid metaheuristic 

strategies on system adaptability, paving the 

way for future research in federated learning and 

decentralized optimization techniques [10]. 

Section 2 discusses related work, highlighting 

existing SI-based optimization techniques and their 

limitations. Section 3 presents the proposed 

methodology, detailing the hybrid swarm 

intelligence framework and deep learning 

integration. Section 4 describes experimental setup 

and results. 5 concludes the paper. 

 

2. Related works  
 

Swarm Intelligence (SI)-based optimization 

techniques have been extensively explored in 

various engineering domains due to their ability to 

solve complex real-time computational problems 

efficiently. Early studies focused on Particle Swarm 

Optimization (PSO), which mimics the social 

behavior of birds to find optimal solutions. 

However, PSO often suffers from premature 

convergence and stagnation in local optima, making 

it less effective in highly dynamic engineering 

environments [11]. To overcome this, researchers 

introduced Grey Wolf Optimizer (GWO), inspired 

by the hierarchical leadership structure of wolf 

packs, offering better exploration and exploitation 

capabilities [12]. Although GWO provides 

balanced search behavior, it lacks adaptability to 

high-dimensional optimization problems commonly 

found in engineering applications [13]. Hybrid 

swarm intelligence methods have been developed 

to leverage the strengths of multiple optimization 

techniques. For instance, the integration of Ant 

Colony Optimization (ACO) with PSO has been 

investigated for real-time traffic optimization, 

showing improved adaptability and faster 

convergence [14]. Similarly, a hybrid PSO-GWO 

model demonstrated superior performance in 

predictive maintenance for industrial automation, 

enhancing fault detection accuracy by 20% 

compared to traditional optimization methods [15]. 

These studies highlight the potential of hybrid SI 

models in optimizing real-time computational 

models across various domains. 
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In addition to hybrid SI models, Deep Neural 

Networks (DNNs) have gained prominence for 

their ability to learn complex patterns and improve 

decision-making in engineering systems. Several 

researchers have explored SI-based neural 

frameworks, integrating PSO and ACO with 

Convolutional Neural Networks (CNNs) for real-

time fault detection in smart grids, achieving up to 

95% fault classification accuracy [16]. 

Furthermore, hybrid SI-DNN models have been 

successfully applied to IoT-based anomaly 

detection systems, significantly reducing false 

alarm rates while maintaining high accuracy [17]. 

Recent advancements in real-time engineering 

optimizations have introduced novel metaheuristic-

based hybrid approaches. For example, a study 

combined Firefly Algorithm (FA) with GWO for 

energy-efficient routing in wireless sensor 

networks, achieving a 32% improvement in 

network lifetime [18]. Another work employed a 

Swarm Intelligence-empowered reinforcement 

learning model for autonomous drone path 

optimization, leading to a 40% reduction in mission 

completion time [19]. These studies reinforce the 

effectiveness of hybrid SI models in enhancing 

performance, efficiency, and adaptability in real-

world engineering applications. Despite these 

advancements, existing approaches still face 

challenges such as high computational overhead, 

limited generalization ability, and slow adaptability 

to dynamic environments. The proposed Hybrid 

Swarm Intelligence-Based Neural Framework 

(HSIN-F) aims to address these limitations by 

integrating PSO, GWO, and ACO with DNNs, 

enabling real-time dynamic optimization, efficient 

parameter tuning, and improved adaptability in 

engineering systems [20]. This research builds upon 

previous studies and introduces a scalable, high-

performance hybrid model suitable for diverse 

engineering applications. 

 

3. Materials and methods 

 
This section presents the Hybrid Swarm 

Intelligence-Based Neural Framework (HSIN-F) 

for optimizing real-time computational models in 

engineering systems. The proposed framework 

integrates Particle Swarm Optimization (PSO), 

Grey Wolf Optimizer (GWO), and Ant Colony 

Optimization (ACO) with Deep Neural Networks 

(DNNs) to enhance predictive accuracy, 

computational efficiency, and adaptability. The 

methodology is structured into five key 

components: (1) Dataset Collection, (2) Data 

Preprocessing, (3) Hybrid Swarm Intelligence 

Optimization, (4) Neural Network Model Design, 

and (5) Performance Evaluation. 

The Hybrid Swarm Intelligence-Based Neural 

Framework (HSIN-F) aims to enhance real-time 

computational models in engineering systems by 

integrating Particle Swarm Optimization (PSO), 

Grey Wolf Optimizer (GWO), and Ant Colony 

Optimization (ACO) with Deep Neural Networks 

(DNNs). The proposed approach effectively 

optimizes hyperparameters, reduces computational 

latency, and improves predictive accuracy. The 

framework operates in four main stages: 

Preprocessing, Hybrid Optimization, Neural Model 

Training, and Performance Evaluation. 

In real-time engineering applications such as smart 

grids, industrial automation, and IoT-based 

predictive systems, computational models must 

efficiently process large-scale data while ensuring 

high accuracy and minimal latency. Traditional 

machine learning approaches struggle with 

optimizing hyperparameters dynamically and 

adapting to real-time variations in data. To 

overcome these challenges, this study proposes a 

Hybrid Swarm Intelligence-Based Neural 

Framework (HSIN-F) that integrates Particle 

Swarm Optimization (PSO), Grey Wolf Optimizer 

(GWO), and Ant Colony Optimization (ACO) with 

Deep Neural Networks (DNNs). This hybrid 

approach enhances hyperparameter tuning, feature 

selection, and neural network pruning, ensuring a 

computationally efficient and highly adaptable 

system. Figure 1 is the block diagram and figure 2 

is flowchart of proposed work. 

 

3.1 Preprocessing Stage 

 

The first stage of the proposed framework involves 

data collection from real-time engineering 

environments, including industrial automation logs, 

sensor data from IoT networks, and smart grid 

telemetry records. The collected data is often noisy, 

incomplete, or redundant, requiring preprocessing 

to ensure the robustness of the computational 

model. Wavelet Transform-based filtering is 

employed to remove noise, while Principal 

Component Analysis (PCA) is used for 

dimensionality reduction: Data collected from real-

time engineering applications undergoes noise 

reduction, feature selection, and normalization to 

enhance model efficiency. The Principal 

Component Analysis (PCA) technique is employed 

to reduce dimensionality while retaining critical 

features: 

𝑋′ = 𝑋𝑊     (1) 

where: 

 𝑋 is the input feature matrix, 

 𝑊 is the transformation matrix of principal 

components, 

 𝑋′ is the reduced feature set. 
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Figure 1. Block diagram of Proposed work  

 

 
 

Figure 2. Flowchart of Proposed work 
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3.2 Hybrid Swarm Intelligence Optimization 

 
The optimization phase integrates PSO, GWO, and 

ACO to fine-tune hyperparameters such as learning 

rate, dropout rate, and weight initialization. Particle 

Swarm Optimization (PSO) for Hyperparameter 

Selection PSO optimizes DNN hyperparameters by 

updating velocity and position as follows: 

𝑣𝑖
𝑡+1 = 𝑤𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝best − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔best − 𝑥𝑖

𝑡)

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1

      (2) 

where: 

 𝑣𝑖
𝑡 is the velocity of particle 𝑖, 

 𝑥𝑖
𝑡 is the position of particle 𝑖, 

 𝑝best  and 𝑔best  are the best positions found 

so far, 

 𝑤 is the inertia weight, and 𝑐1, 𝑐2 are 

acceleration coefficients. 

Grey Wolf Optimizer (GWO) for Feature Selection 

The GWO algorithm refines feature selection by 

mimicking the hunting strategy of grey wolves: 
𝐷𝛼 = |𝐶1 ⋅ 𝑋𝛼 − 𝑋|

𝑋(𝑡 + 1) = 𝑋𝛼 − 𝐴1 ⋅ 𝐷𝛼
   (3) 

where: 

 𝑋𝛼 represents the alpha wolf's position, 

 𝐴1, 𝐶1 are coefficient vectors controlling 

search dynamics. 

Ant Colony Optimization (ACO) for Model 

Pruning 

ACO enhances the neural model by pruning 

redundant neurons, using a pheromone-based 

learning rule: 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + ∑  𝑚
𝑘=1 Δ𝜏𝑖𝑗

𝑘  (4) 

where: 

 𝜏𝑖𝑗 represents the pheromone concentration 

on path 𝑖𝑗, 

 𝜌 is the evaporation rate, 

 Δ𝜏𝑖𝑗
𝑘  is the pheromone deposit by ant 𝑘. 

3.3 Deep Neural Network Training 

A significant challenge in deep learning models is 

determining optimal hyperparameters, such as 

learning rate, dropout rate, batch size, and 

activation functions. The proposed HSIN-F 

framework employs a hybrid swarm intelligence 

optimization strategy to dynamically fine-tune these 

hyperparameters. The PSO algorithm adjusts the 

hyperparameters iteratively, using the following 

update equations: The DNN model is trained using 

optimized hyperparameters, incorporating ReLU 

activation for hidden layers and Softmax for 

classification: 

𝑓(𝑥) = max(0, 𝑥)

𝑃(𝑦𝑖) =
𝑒𝑧𝑖

∑  𝑛
𝑗=1  𝑒

𝑧𝑗

   (5) 

where: 

 𝑓(𝑥) is the ReLU activation function, 

 𝑃(𝑦𝑖) represents the probability of class 𝑦𝑖, 

 𝑧𝑖 is the output of neuron 𝑖. 

The loss function used for optimization is Cross-

Entropy Loss: 

𝐿 = −∑  𝑛
𝑖=1 𝑦𝑖log(�̂�𝑖)   (6) 

The Hybrid Swarm Intelligence-Based Neural 

Framework (HSIN-F) leverages PSO, GWO, and 

ACO algorithms with DNNs to optimize real-time 

computational models in engineering applications. 

Through intelligent hyperparameter tuning, feature 

selection, and structural pruning, the proposed 

model achieves higher accuracy, faster 

computation, and lower energy consumption than 

conventional methods. Experimental results 

confirm the effectiveness of HSIN-F, making it a 

robust solution for modern engineering challenges. 

Future research will focus on enhancing 

adaptability and scalability through advanced 

metaheuristic strategies and federated learning 

approaches to further optimize real-time 

engineering systems. 

4. Experimental Results 
  

To validate the effectiveness of the Hybrid Swarm 

Intelligence-Based Neural Framework (HSIN-F), 

we conducted extensive experiments comparing its 

performance against traditional PSO-DNN, GWO-

DNN, and ACO-DNN models. The primary goal of 

these experiments was to assess the accuracy, 

computational latency, energy efficiency, and error 

rate reduction of HSIN-F in real-time engineering 

applications such as smart grids, industrial 

automation, and IoT-based predictive maintenance. 

 

4.1. Hardware and Software Configuration 

 

The experiments were conducted on a high-

performance computing system with the following 

specifications: 

 Processor: Intel Core i9-12900K (3.8 GHz, 16 

cores) 

 GPU: NVIDIA RTX 3090 (24GB VRAM) 

 RAM: 64GB DDR4 

 Operating System: Ubuntu 22.04 LTS 
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 Software Libraries: TensorFlow, PyTorch, 

NumPy, SciPy, Scikit-learn, and Matplotlib 

The combination of high-end computational 

resources and optimized software environments 

ensured that our experiments were conducted under 

stable and reproducible conditions. 

 

4.2. Datasets Used for Evaluation 

 

The experiments utilized real-world engineering 

datasets collected from various industrial and smart 

city applications. The datasets included: 

 Industrial Control System (ICS) Logs: Used 

for anomaly detection in automated industrial 

processes. 

 Smart Grid Sensor Data: Captured energy 

consumption, voltage fluctuations, and system 

stability parameters. 

 IoT-Based Predictive Maintenance Data: 

Included real-time sensor readings from 

industrial IoT devices to detect system failures. 

These datasets provided diverse challenges in 

classification, anomaly detection, and predictive 

modeling, making them suitable for testing the 

robustness of HSIN-F. 

 

4.3. Performance Evaluation Metrics 

 

To compare HSIN-F with traditional models, we 

defined the following performance metrics: 

 Prediction Accuracy (%): Measures the 

percentage of correctly classified instances. 
Figure 3 is the comparison of accuracy (%) 

among models. 

 Computational Latency Reduction (%): 
Evaluates improvements in processing speed. 
Figure 4 is the comparison of latency reduction 

(%) among models. 

 Energy Efficiency Improvement (%): 
Quantifies reduction in computational power 

usage. Figure 5 is the comparison of energy 

efficiency (%) among models. 

 Error Rate Reduction (%): Measures the 

decrease in misclassification errors. Figure 6 

shows comparison of error rate Reduction (%) 

among models. 

These metrics provide a comprehensive assessment 

of the framework's efficiency in real-time 

optimization tasks. 

 

4.4. Model Training and Hyperparameter 

Tuning 

 

The PSO-GWO-ACO hybrid optimization strategy 

was employed to fine-tune the hyperparameters of 

the deep neural network (DNN). The optimized 

parameters included: 

 Learning rate: Dynamically tuned using PSO. 

 Batch size: Optimized using GWO to balance 

training efficiency. 

 Feature selection and pruning: Enhanced by 

ACO, reducing model complexity while 

maintaining accuracy. 

The training process was conducted over 50 

epochs, with an early stopping mechanism to 

prevent overfitting. Table 1 shows experimental 

setup results. 

 
Table 1. Experimental Setup Results 

Model Accuracy 

(%) 

Latency 

Reduction (%) 

HSIN-F 

(Proposed) 

98.2 34.7 

PSO-DNN 93.5 22.4 

GWO-DNN 94.1 24.8 

ACO-DNN 92.7 20.5 

 

Figure 3. Comparison of Accuracy (%) Among Models 
 

Figure 4. Comparison of Latency Reduction (%) Among 

Models 
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Figure 5. Comparison of Energy Efficiency (%) Among 

Models 
 

Figure 6. Comparison of Error Rate Reduction (%) 

Among Models 
 

5. Conclusion  

 
This study presented a Hybrid Swarm Intelligence-

Based Neural Framework (HSIN-F) for optimizing 

real-time computational models in engineering 

systems. By integrating Particle Swarm 

Optimization (PSO), Grey Wolf Optimizer (GWO), 

and Ant Colony Optimization (ACO) with Deep 

Neural Networks (DNNs), the proposed framework 

effectively enhances predictive accuracy, 

computational efficiency, and adaptability in real-

time applications. The hybrid optimization 

approach mitigates common issues such as 

premature convergence, slow adaptability, and high 

computational overhead, thereby achieving a 98.2% 

prediction accuracy, 34.7% reduction in 

computational latency, and 27.5% improvement in 

energy efficiency. Experimental validation across 

industrial automation, smart grids, and IoT-based 

predictive maintenance systems demonstrated the 

robustness and efficiency of HSIN-F over 

conventional optimization techniques. Future 

research will explore advanced hybrid 

metaheuristic strategies, federated learning-based 

decentralization, and reinforcement learning-based 

optimization to further enhance real-time decision-

making and adaptability in complex engineering 

environments. IoT has been used in different 

applications [21-26]. 
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